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MAXIMUM PRINCIPLE, CONVERGENCE OF

SEQUENCES AND ANGULAR LIMITS FOR

HARMONIC BLOCH MAPPINGS

Jinjing Qiao and Hongya Gao

Abstract. In this paper, we investigate maximum principle, convergence
of sequences and angular limits for harmonic Bloch mappings. First, we

give the maximum principle of harmonic Bloch mappings, which is a gen-

eralization of the classical maximum principle for harmonic mappings.
Second, by using the maximum principle of harmonic Bloch mappings,

we investigate the convergence of sequences for harmonic Bloch mappings.
Finally, we discuss the angular limits of harmonic Bloch mappings. We

show that the asymptotic values and angular limits are identical for har-

monic Bloch mappings, and we further prove a result that applies also if
there is no asymptotic value. A sufficient condition for a harmonic Bloch

mapping has a finite angular limit is also given.

1. Preliminaries

A complex-valued function f is said to be harmonic in a simply connected
domain Ω of the complex plane C if and only if both Re{f} and Im{f} are real
harmonic mappings in Ω. Every harmonic mapping f in Ω has the canonical
decomposition:

(1.1) f = h+ g,

where both h and g are analytic in Ω and g(z0) = 0 for some prescribed point
z0 ∈ Ω (cf. [8]). Let D = {z ∈ C : |z| < 1} and T = {z : |z| = 1}. Throughout
this paper, we consider harmonic mappings in D.

Definition 1. Let f be a harmonic mapping satisfying the Lipschitz condition
when regarded as a function from the hyperbolic disk D into C, endowed with
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the Euclidean distance. The function f is called a harmonic Bloch mapping
and the Lipschitz number

sup
z 6=w

|f(z)− f(w)|
ρ(z, w)

is called the Bloch constant of f , where ρ denotes the hyperbolic distance in
D, that is,

ρ(z, w) =
1

2
log
(1 + r

1− r

)
and r is the modulus of z−w

1−zw (cf. [6]).

For an analytic function f , its Bloch constant is (see [7, Theorem 10])

sup
z 6=w

|f(z)− f(w)|
ρ(z, w)

= sup
z∈D

(1− |z|2)|f ′(z)|.

See, for example, [1] for more details.
As a generalization, in [6], the author proved that the Bloch constant of a

harmonic mapping f = h+ g has the following expression:

sup
z 6=w

|f(z)− f(w)|
ρ(z, w)

= sup
z∈D

(1− |z|2)
(
|h′(z)|+ |g′(z)|

)
.

Obviously, a function f = h+ g is Bloch if and only if both h and g are Bloch.
In the following, we introduce some necessary notions and notations.
Let BH (resp. B) denote the class of all harmonic mappings (resp. analytic

functions) f with supz∈D(1 − |z|2)
(
|h′(z)| + |g′(z)|

)
< ∞ (resp. supz∈D(1 −

|z|2)|f ′(z)| <∞). It is easy to see that BH (resp. B) is a Banach space with
the norm

‖f‖BH = |f(0)|+ sup
z∈D

(1− |z|2)
(
|h′(z)|+ |g′(z)|

)
(resp. ‖f‖B = |f(0)|+ sup

z∈D
(1− |z|2)|f ′(z)|),

which is called the harmonic Bloch space (resp. Bloch space). Each element in
BH (resp. B) is a harmonic Bloch mapping (resp. Bloch function).

The little harmonic Bloch space BH,0 (resp. little Bloch space B0) is the set
of all mappings f ∈ BH (resp. f ∈ B) satisfying

lim
|z|→1

(1− |z|2)
(
|h′(z)|+ |g′(z)|

)
= 0 (resp. lim

|z|→1
(1− |z|2)|f ′(z)| = 0).

Each element in BH,0 (resp. B0) is called a little harmonic Bloch mapping
(resp. little Bloch function).

Definition 2. We say that the harmonic mapping f in D has the asymptotic
value a ∈ C at the point ξ ∈ T if there exists a Jordan arc Γ that ends at ξ and
lies otherwise in D such that

f(z)→ a for z ∈ Γ, z → ξ.

We call such an arc an asymptotic path. If Γ = {ξr : 0 ≤ r ≤ 1}, we call a a
radial limit (cf. [10]).
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Definition 3. A (symmetric) Stolz angle is a set of the form

A = {z ∈ D : | arg(1− ξz)| < π

2
− δ} (0 < δ <

π

2
),

that is a sector of vertex ξ and angle less than π symmetric to [0, ξ]. We say
that f has the angular limit a at ξ ∈ T if

f(z)→ a as z → ξ, z ∈ A

for every Stolz angle A at ξ (cf. [10]).

It is well known that (analytic) Bloch functions are normal functions (see [10,
p. 261] for definition of normal functions). In this paper, we consider properties
of harmonic Bloch mappings, which are generalizations of the corresponding
ones for normal functions or Bloch functions.

In [9] (see also [10, Theorem 9.1]), it is given the maximum principle for nor-
mal functions, which is a generalization of the classical maximum principle for
analytic functions since there is no any assumption on |f(z)| with z belonging
to some subarc of the boundary. In Section 2, we consider the maximum prin-
ciple of harmonic Bloch mappings, and get a harmonic analog of [10, Theorem
9.1], which is a generalization of the classical maximum principle for harmonic
mappings.

In Section 3, we consider the convergence for a sequence of harmonic Bloch
mappings. By using maximum principle of harmonic Bloch mappings which
is obtained in Section 2, we prove that a sequence of harmonic Bloch map-
pings fn converges to 0 as n → ∞ in the unit disk under the condition that
maxz∈Cn

|fn(z)| converges to 0, where {Cn} is a sequence of closed Jordan arcs
with positive measure. Our main result is Theorem 2, which is a generalization
of [10, Theorem 9.2] for normal functions.

Finally, in the last section, we consider the angular limits of harmonic
Bloch mappings. We first show that the asymptotic values and angular lim-
its are identical for harmonic Bloch mappings. Then, as a generalization of
[10, Theorem 9.5], by using different method, we prove that for a set E, if
supz∈D |Img(z)| < ∞ or supz∈D |Imh(z)| < ∞, lim sup dist[f(z), E] exists as
z → ξ ∈ T along some arc Γ ⊂ D with ξ ∈ Γ, then this is true in every Stolz
angle. A sufficient condition for a harmonic Bloch mapping has a finite angular
limit is also given.

2. Maximum principle for harmonic Bloch mappings

Before giving the main result, we give the following lemma which will be
useful in the proof of the main result.

Lemma 1. Let ϕ be analytic in D and |ϕ(z)| < 1. If f = h+ g is a harmonic
Bloch mapping in D and

sup
z∈D

(1− |z|2)(|h′(z)|+ |g′(z)|) = α <∞,
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then F = f ◦ ϕ = H +H1 is also Bloch in D, and

sup
z∈D

(1− |z|2)(|H ′(z)|+ |H ′1(z)|) ≤ α,

with equality if ϕ is a Möbius transformation of D onto itself.

Proof. By G. Pick’s Theorem ([3, p. 6]), we have

(1− |z|2)|ϕ′(z)| ≤ 1− |ϕ′(z)|2,

with equality for a Möbius transformation of D onto itself, it follows that

(1− |z|2)(|H ′(z)|+ |H ′1(z)|) = (1− |z|2)|ϕ′(z)|(|h′(ϕ(z))|+ |g′(ϕ(z))|)
≤ (1− |ϕ(z)|2)(|h′(ϕ(z))|+ |g′(ϕ(z))|)
≤ α.

The proof of the lemma is complete. �

Theorem 1. Let f = h+ g ∈ BH and

(2.1) sup
z∈D

(1− |z|2)(|h′(z)|+ |g′(z)|) ≤ α <∞.

Let G be a domain with G ⊂ D that lies in the lens-shaped domain of angle β
(0 < β < π) cut off from D by the circular arc B. We suppose that

(2.2) |f(z)| ≤ δ

for z ∈ ∂G \B. Then

(2.3) |f(z)| ≤ η

for z ∈ G, where η = η(δ, α, β) is the smallest positive solution of

(2.4) δ = η exp[− κ

2η
]

with κ = αβ/ sinβ.

This theorem is a generalization of the classical maximum principle for har-
monic mappings in so far as it does not make any assumption about |f(z)|
for z ∈ B ∩ ∂G. On the other hand, this theorem is highly non-linear: It is
only when, compared to 1/α, |f(z)| is rather small on ∂G \B that we get any
estimate at all.

Since the function t exp[− κ
2t ] is increasing for 0 < t <∞, it follows that, for

δ ≥ 0, (2.4) has a unique solution η with η ≥ 0.
This theorem is also a generalization of [10, Theorem 9.1] for analytic func-

tions which is a basic result for the maximum principle for normal functions
obtained by Lehto and Virtanen in [9].

Proof of Theorem 1. By choosing a suitable Möbius transformation ϕ of D onto
D and replacing f by F = f ◦ ϕ, we assume that B is a circular arc passing
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Figure 1.

through−1 and 1, andG lies below the arc B. By Lemma 1, F = f◦ϕ = H+H1

is also Bloch in D, and

sup
z∈D

(1− |z|2)(|H ′(z)|+ |H ′1(z)|) ≤ α.

For 0 < β′ < β, let G′ be the intersection of G with the domain of angle β′ cut
off by the circular arc B′ through ±1 (see Figure 1).

Suppose that (2.3) does not hold. Since |f(z)| ≤ δ < η (z ∈ ∂G\B) by (2.2)
and (2.4), and since G ⊂ D, there exists β′ such that |f(z)| ≤ η for z ∈ G′. Let
β′ (0 < β′ < β) be the largest such number. Then

(2.5) η = sup
z∈G′

|f(z)| = |f(z0)|

for some z0 ∈ B′ \ ∂G. By a further Möbius transformation we may assume
that z0 = iy0, −1 < y0 < 1, where

(2.6) y0 = tan(
β′

2
− π

4
).

Let

a(z) = |f(z)| exp[
b

i
log

1 + z

1− z
+
πb

2
− 2bβ′] (z ∈ G′),

where b = 1
β′ log η

δ (> 0). It is known that every point in D is on one circular

arc that passes through −1, iy and 1 for some −1 < y < 1, and on this circular
arc arg[(1 + z)/(1 − z)] = arg[(1 + iy)/(1 − iy)] = 2 arctan y, it follows that
exp[ bi log 1+z

1−z + πb
2 − 2bβ′] and |a(z)| with z ∈ G′ attains its maximum on the

boundary point z0 = iy0. Since arg[(1 + z)/(1 − z)] = β′ − π
2 for z ∈ B′, it

follows from (2.5) that

max
z∈B′∩∂G′

|a(z)| ≤ η exp(−bβ′) = δ.
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Since ∂G′ \B′ ⊂ ∂G \B, we obtain from (2.2) that

sup
z∈∂G′\B′

|a(z)| ≤ sup
z∈∂G′\B′

|f(z)| ≤ sup
z∈∂G\B

|f(z)| ≤ δ.

Hence from the property that |a(z)| with z ∈ G′ attains its maximum on the
boundary point z0 = iy0, it follows that |a(z)| ≤ δ for z ∈ G′, and then

log |f(iy)| ≤ log δ + 2bβ′ − πb

2
− 2b arctan y, iy ∈ G′.

We have from (2.6) that β′ = π
2 − 2 arctan y0. Since |f(iy0)| = η, we have

log |f(iy0)| = log η = log δ + bβ′ = log δ + 2bβ′ − πb

2
− 2b arctan y0.

Therefore

log |f(iy)| − log |f(iy0)| ≤ −2b(arctan y − arctan y0), iy ∈ G′.

Letting y → y+
0 yields that

(2.7) Re[i
h′(iy0)− g′(iy0)

f(iy0)
] ≤ −2b

1 + y2
0

= − 2 log(η/δ)

β′(1 + y2
0)
.

On the other hand, since |f(iy0)| = η, it follows from (2.1) that
(2.8)

|h
′(iy0)− g′(iy0)

f(iy0)
| ≤ |h

′(iy0)|+ |g′(iy0)|
|f(iy0)|

≤ α

η(1− y2
0)

=
α

η(1 + y2
0) sinβ′

.

Hence (2.7) and (2.8) imply that

δ ≥ η exp[− κ
′

2η
], κ′ =

αβ′

sinβ′
,

which contradicts (2.4) because κ′ < κ. �

3. The convergence for sequences of harmonic Bloch mappings

We begin this section with the following lemma, which is identity theorem
for harmonic mappings, see, for example, [5, Lemma 2].

Lemma 2. Let f be harmonic in a connected open set D. If f(z) ≡ 0 in some
open subset G of D, then f(z) ≡ 0 in D.

Marty’s normality criterion (see [10, p. 262]) states that a family of mero-
morphic functions is normal if and only if their spherical derivative (see [10,
p. 261] for the definition of spherical derivative) are locally uniformly bounded.
Hence a sequence of Bloch function is normal, and then a sequence of harmonic
Bloch mappings is also normal since both the analytic part and anti-analytic
part of a harmonic Bloch mapping are Bloch, this fact will be used in the proof
of the following theorem.
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Theorem 2. Let fn ∈ BH, and

(3.1) sup
z∈D

(1− |z|2)(|h′n(z)|+ |g′n(z)|) ≤ α <∞, n = 1, 2, . . . .

If there exist closed Jordan arcs Cn ⊂ D such that

(3.2) diamCn = sup
z,w∈Cn

|z − w| > γ > 0, n = 1, 2, . . .

and

(3.3) max
z∈Cn

|fn(z)| → 0 (n→∞),

then fn(z)→ 0 as n→∞, locally uniformly in D.

Proof. Suppose that the assertion is false. By (3.1) and Marty’s criterion, the
sequence {fn} is normal in D. Taking a subsequence we may therefore assume
that

(3.4) fn(z)→ f(z) as n→∞, locally uniformly in D,
where f is a harmonic mapping such that f(z0) 6= 0 for some z0 ∈ D.

Now, we consider the first case that

(3.5) rn = inf{|z| : z ∈ Cn} → 1 (n→∞).

By (3.2), there exist points an, bn ∈ Cn with |an − bn| > γ. If Bn denotes the
circle through an and bn that is orthogonal to T, then for n is sufficiently large,
an and bn lie on different arcs of B∗n = Bn ∩ {rn ≤ |zn| ≤ 1}. Hence we can
find a subarc C ′n of Cn that intersects each arc of B∗n exactly once. By (3.5),
the subarc B′n of Bn between the endpoints of C ′n does not intersect C ′n at any
other point.

If Gn is the inner domain of the Jordan curve B′n∪C ′n, then ∂Gn = B′n∪C ′n ⊂
D, which shows that Gn ⊂ D. Hence we obtain from (3.1), (3.3) and Theorem
1 (with β = π

2 ) that

max
z∈B′n

|fn(z)| ≤ max
z∈Gn

|fn(z)| → 0 (n→∞).

Since B′n intersects {|z| ≤ r} for some r < 1 and large n, it therefore follows
from (3.4) and Lemma 2 that f(z) ≡ 0, which is false.

In the case that (3.5) does not hold, Cn intersects {|z| ≤ r} for some r < 1
and infinitely many n. Hence it follows from (3.2), (3.3), (3.4) and Lemma 2
that f(z) ≡ 0, and this is false. �

A sequence {Cn} of closed Jordan arcs Cn ⊂ D is called a sequence of
harmonic Koebe arcs with respect to the harmonic mapping f if diam Cn ≥
γ > 0 (n = 1, 2, . . .) and if, for some c ∈ C,

max
z∈Cn

|f(z)− c| → 0, n→∞.

We say that f has no Koebe arcs if no such sequence exists.

Corollary 1. A non-constant harmonic Bloch mapping has no Koebe arcs.
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This corollary is a generalization of [10, Corollary 9.1] for normal functions,
which is obtained by Bagemihl and Seidel in 1961. The proof follows from
Theorem 2 for fn(z) ≡ f(z), here we omit it.

Corollary 2. Let f be non-constant harmonic Bloch in D and let Γ : z(t),
0 ≤ t < 1 be a half-open Jordan arc in D with |z(t)| → 1 (t→ 1). If

(3.6) f(z(t))→ a as t→ 1−,

then z(t)→ ξ (t→ 1−) for some ξ ∈ T so that Γ is an asymptotic path.

Proof. It is clear that z(t) has at least one limit point on T as t→ 1−. Suppose
there are two distinct limit points ξ, ξ′ ∈ T. Then we can find closed subarcs
Cn of Γ such that diamCn → |ξ − ξ′| 6= 0 as n → ∞. By (3.6), they form a
sequence of Koebe arcs, contrary to Corollary 1. �

4. The angular limit of harmonic Bloch mappings

By Definition 2, an angular limit is a radial limit and therefore an asymptotic
value. In the following theorem, we will show that the converse holds for
harmonic Bloch mappings. Therefore a harmonic Bloch mapping has at most
one asymptotic value at any given point ξ ∈ D.

Theorem 3. If the harmonic mapping f ∈ BH has the asymptotic value a at
ξ, then f also has the angular limit a at ξ.

The main idea of the proof for this theorem comes from the proof of [10,
Theorem 9.3] (see also [9]). For the convenience, we give the proof.

Proof of Theorem 3. Without loss of generality, we assume that ξ = 1 and
a = 0. Suppose that zn → 1 for zn ∈ A, where A is a Stolz angle at ξ. First,
we choose two real sequences {ξn} and {yn}, and r < 1 such that

(4.1) zn = ϕn(iyn), ϕn(s) =
s+ ξn
1 + ξns

, |yn| ≤ r, ξn → 1−.

Obviously, |zn| < 1. The pre-image ϕ−1
n (Γ) of the asymptotic path Γ intersects

the imaginary axis if n sufficiently large. Hence we can find a subarc Cn of
D ∩ ϕ−1

n (Γ) such that diamCn ≥ 1
2 , Rez > 0 for z ∈ Cn, and there exists a

sequence {wn} in the arc ϕn(Cn) ⊂ Γ such that wn → 1 as n→∞. Then

(4.2) max
s∈Cn

|f(ϕn(s))| = max
z∈ϕn(Cn)

|f(z)| → 0 (n→∞).

Since f ◦ ϕn is harmonic Bloch in D by Lemma 1, we obtain from Theorem 2
that f(ϕn(s)) → 0 as n → ∞, uniformly in |s| ≤ r. Hence (4.1) shows that
f(zn)→ 0 (n→∞). �

From Theorem 3, we know that for harmonic Bloch mappings, asymptotic
values and angular limits are identical. In the following, we can furthermore
prove a result that applies also if there is no asymptotic values.
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Theorem 4. Let f = h+ g ∈ BH and E ⊂ C. If

sup
z∈D
|Img(z)| <∞ or sup

z∈D
|Imh(z)| <∞,

and if Γ is a Jordan arc that ends at ξ ∈ T and lies otherwise in D such that

(4.3) lim sup
z→ξ, z∈Γ

dist[f(z), E] <∞,

then, for every Stolz angle A with vertex ξ,

(4.4) lim sup
z→ξ, z∈A

dist[f(z), E] <∞.

Choosing E = {|w| ≤ r} or E = R we see that if |f(z)| or Imf(z) re-
mains bounded as z → ξ along some arc Γ with supz∈D |Img(z)| < ∞ or
supz∈D |Imh(z)| <∞, then this is true in every Stolz angle.

This theorem is indeed a harmonic analog of [10, Theorem 9.5] (see also [1])
for Bloch functions.

Proof of Theorem 4. Without loss of generality, we assume that ξ = 1 and
supz∈D |Img(z)| < ∞. Suppose that (4.4) is false for some Stolz angle A with
vertex 1. Then there exist zn ∈ A with

(4.5) dist[f(zn), E]→∞, zn → 1 (n→∞),

which is equivalent to

(4.6) inf
w∈E
|h(zn) + g(zn)− 2iImg(zn)− w| → ∞, zn → 1 (n→∞).

As in the proof of Theorem 3, we write zn in the form of (4.1) and determine
arcs Cn ⊂ D ∩ ϕ−1

n (Γ) such that ϕn(Cn)→ 1 as n→∞. The function

bn(s) =
1

h(ϕn(s)) + g(ϕn(s))− (h(zn) + g(zn))

is meromorphic, and satisfies

(1− |s|2)
|b′n(s)|

1 + |bn(s)|2
≤ (1− |ϕn(s)|2)(|h′(ϕn(s))|+ |g′(ϕn(s))|) ≤ α.

It follows from (4.3), the inequalities supz∈D |Img(z)| <∞ and

1

|h(ϕn(s)) + g(ϕn(s))− (h(zn) + g(zn))|

≤ 1∣∣|f(ϕn(s))− w + 2iIm
(
g(ϕn(s))− g(zn)

)
| − |f(zn)− w|

∣∣ (w ∈ E)

that bn(s) → 0 for s ∈ Cn, n → ∞. Consequently, by [10, Theorem 9.2],
bn(s) → 0 as n → ∞ uniformly in |s| ≤ r. This contradicts the fact that
bn(iyn) =∞ and |yn| ≤ r by (4.1). �
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In the remaining part of this section, we consider a method to associate
to each harmonic mapping in the little harmonic Bloch space BH,0 another
function f∗ in the harmonic Bloch space BH in such a way that f has a finite
angular limit where f∗ is locally bounded. The idea of the methods comes from
the theory of the lacunary series, which was used in [4]. For completeness, we
give the proof of the main result.

Now, we first introduce some polynomials. For the harmonic mapping

(4.7) f(z) = h(z) + g(z) =

∞∑
n=0

anz
n +

∞∑
n=1

bnzn with z ∈ D,

we define polynomials p0(z) = a0 + a1z + a2z
2 and

(4.8) pk(z) =

2k∑
n=2k−1+2

2n− 2k − 2

n− 1
anz

n +

2k+1∑
n=2k+1

2k+1 − n+ 1

n− 1
anz

n

for k = 1, 2, . . .. Induction shows that

m∑
k=0

pk(z) =

2m∑
n=0

anz
n +

2m+1∑
n=2m+1

2m+1 − n+ 1

n− 1
anz

n,

and since lim sup |an|1/n ≤ 1, it follows that

(4.9) h(z) =

∞∑
k=0

pk(z) for z ∈ D.

Similarly, we define polynomials q0(z) = b1z + b2z
2 and

(4.10) qk(z) =

2k∑
n=2k−1+2

2n− 2k − 2

n− 1
bnz

n +

2k+1∑
n=2k+1

2k+1 − n+ 1

n− 1
bnz

n

for k = 1, 2, . . .. We also have

(4.11) g(z) =

∞∑
k=0

qk(z) for z ∈ D.

Obviously, all pk and qk (k = 1, 2, . . .) are in the class H∞ of bounded
analytic functions f in D, which is a Banach space with the norm

‖f‖∞ = sup
z∈D
|f(z)|.

Now, we give the following three lemmas which is useful in the proof of next
result.

Lemma 3 ([4, Proposition 1]). If h ∈ B, then

‖pk‖∞ = sup
|z|≤1

|pk(z)| ≤ 6‖h‖B
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for k = 0, 1, . . ., and if h ∈ B0, then

‖pk‖∞ → 0 as k →∞.

Lemma 4 ([4, Proposition 2]). If ‖pk‖∞ is bounded, then h ∈ B and

‖h‖∞ ≤ 16 sup
k≥0
‖pk‖∞.

If ‖pk‖∞ → 0 as k →∞, then h ∈ B0.

Lemma 5 ([4, Proposition 3]). Let h ∈ B. If sk(z) = p0(z)+p1(z)+· · ·+pk(z)
and rk = 1− 2−k, then

|h(rkz)− sk(z)| ≤ 30‖h‖B for |z| ≤ 1.

For g(z) and qk(z) (k = 0, 1, . . .), we have similar results as the above three
lemmas. More details for Lemmas 3 and 4, see also [11] or [12, Vol 1, p. 115].

Theorem 5. If f ∈ BH,0, then there is a harmonic mapping f∗ ∈ BH,0 ⊂ BH
such that, for all ξ ∈ T,

sup
r
|f∗(rξ)| <∞⇒ lim

r→1
f(rξ) exists 6=∞.

This theorem generalize [4, Theorem] for Bloch functions to the case of
harmonic Bloch mappings.

Proof of Theorem 5. Let f ∈ BH,0. It follows from Lemma 3 that there exist
two decreasing sequences {εk} and {εk} such that

(4.12) ‖pk‖∞ < ε2
k and ‖qk‖∞ < ε2k

for k = 0, 1, . . ., where pk and qk are given by (4.8) and (4.10), respectively.
We define

f∗(z) = h∗(z) + g∗(z) =

∞∑
k=0

p∗k(z) +
∞∑
k=0

q∗k(z),

where p∗k(z) = ε−1
k pk(z) and q∗k(z) = ε−1

k qk(z) for k = 0, 1, . . .. This coincides
with the expansion (4.9) and (4.11).

Since ‖p∗k‖∞ < εk and ‖q∗k‖∞ < εk by (4.12), we conclude from Lemma 4
that h∗, g∗ ∈ B0, and then f∗ ∈ BH,0.

Writing s∗k = p0+p∗1 +· · ·+p∗k and S∗k = q0+q∗1 +· · ·+q∗k, partial summations
give

N∑
k=0

εkp
∗
k(z) = εNs

∗
N (z) +

N−1∑
k=0

(εk − εk+1)s∗k(z)

and
N∑
k=0

εkq
∗
k(z) = εNS

∗
N (z) +

N−1∑
k=0

(εk − εk+1)S∗k(z).
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It follows that

f(rξ) = h(rξ) + g(rξ) =

∞∑
0

εkp
∗
k(rξ) +

∞∑
0

εkq∗k(rξ)

= lim
N→∞

( N∑
0

εkp
∗
k(rξ)

)
+ lim
N→∞

( N∑
0

εkq∗k(rξ)
)

= lim
N→∞

(
εNs

∗
N (z) +

N−1∑
k=0

(εk − εk+1)s∗k(z)
)

+ lim
N→∞

(
εNS∗N (z) +

N−1∑
k=0

(εk − εk+1)S∗k(z)
)

=

∞∑
k=0

(εk − εk+1)s∗k(rξ) +

∞∑
k=0

(εk − εk+1)S∗k(rξ).

Let now |f∗(rξ)| be bounded in 0 ≤ r < 1 for some ξ ∈ T. By Lemma 5, we
have

|f∗(rξ)−s∗k(ξ)−S∗k(ξ)| ≤ |h∗(rξ)−s∗k(ξ)|+ |g∗(rξ)−S∗k(ξ)| ≤ 30(‖h‖B +‖g‖B)

for r = 1 − 2−k. It follows that |s∗k(ξ) + S∗k(ξ)| is also bounded in k. Since

|s∗k(ξ) + S∗k(ξ)| is continuous in 0 ≤ r < 1 for each k and since εk − εk+1 ≥ 0
and εk − εk+1 ≥ 0, we easily deduce that

f(rξ) =

∞∑
k=0

(εk − εk+1)s∗k(rξ) +

∞∑
k=0

(εk − εk+1)S∗k(rξ)

is uniformly continuous in 0 ≤ r < 1 and therefore has a limit as r → 1−. �

We write the class of bounded harmonic mappings f in D as h∞, which is a
Banach space with the norm

‖f‖∞ = sup
z∈D
|f(z)|.

An immediate consequence of [6, Theorem 3] is that h∞ ⊂ BH, however it is
well known that a bounded harmonic functions doesn’t always belong to BH,0
(see [2, Section 3]). In [2], Attele proved that if f ∈ H∞, then f ′(reiθ)(1−r2)→
0 for almost all θ as r → 1−. By using similar argument, we can generalize this
result to the case of harmonic mappings and obtain the following remark.

Remark 1. Suppose that f = h + g ∈ h∞ is a harmonic Bloch mapping in D,
then

|eiθh′(reiθ) + eiθg′(reiθ)|(1− r2)→ 0 for almost all θ as r → 1−.
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