DOI QR코드

DOI QR Code

Anti-Diabetic Effects of Sprouts in High-Fat Diet and Streptozotocin-Induced Type II Diabetes Mellitus Mice

고지방식이와 STZ 유도 제2형 당뇨 마우스에서 새싹의 항당뇨 효과

  • Received : 2014.06.24
  • Accepted : 2014.09.26
  • Published : 2014.11.30

Abstract

Sprout vegetables containing various types of polyphenols and flavonoids, are known to have anti-inflammatory, antioxidant, cholesterol-lowering, and anti-obesity activities. However, there have been few reports on the anti-diabetic efficacy of sprout vegetables. Here, we investigated the anti-diabetic effects of sprout extract obtained from buckwheat, beet, rape, broccoli, kohlrabi, red young radish, and dachai, in high fat diet (HFD) and streptozotocin (STZ)-induced type II diabetes mellitus mice. The mice were fed a HFD (60% calories as fat) for 8 weeks prior to intraperitoneal injection with STZ (75 mg/kg). The diabetic mice were divided into four groups: standard diet (STD, 10% calories fat), HFD, HFD with sprout extract (SPE) and HFD with metformin (MET). After 4 weeks, body weight gain was much lower in both SPE and MET groups than in HFD group. In contrast, there was no difference experiment groups regarding food intake ratio. The level of fasting blood glucose was significantly lower in the SPE and MET groups compared to the HFD group. Oral glucose tolerance and insulin tolerance in the SPE and MET groups were significantly ameliorated in comparison to the HFD group. The concentrations of serum total cholesterol, triglycerides, and LDL cholesterol in the SPE and MET groups were remarkably reduced in comparison to the HFD group, and HDL cholesterol concentration was higher in the SPE and MET groups than in the HFD group. Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase levels were between SPE and HFD groups. The serum insulin and leptin concentrations were significantly reduced in both the SPE and MET groups compared to the HFD group. Therefore, these results indicate that sprout extract could improve insulin resistance and attenuate blood glucose level in HFD/STZ-induced type II diabetes mellitus mice. We conclude that this study may provide positive insights into sprout extract as a functional food ingredient for treatment of type II diabetes mellitus.

본 연구에서는 고지방식이와 streptozotocin으로 유도된 제2형 당뇨 마우스에서 새싹추출물의 항당뇨 효과를 살펴보았다. 제2형 당뇨 유도 후 4주 동안의 체중 변화를 관찰한 결과 새싹추출물군과 메트포민군에서 유의한 체중 감소 변화가 나타났으며, 식이섭취량에 따른 변화는 모든 실험군 간의 차이가 없었다. 공복혈당은 고지방식이군의 경우 실험종료일까지 지속적으로 상승하였고, 이와 대조적으로 새싹추출물과 메트포민군의 경우 실험 2주째부터 감소하여 실험 종료 4주째에서는 고지방식이군보다 유의적으로 감소하였다. 경구 내당능 검사는 포도당 섭취 후 60분, 90분, 120분에서 새싹추출물과 메트포민군이 고지방식이군보다 유의적으로 감소하였으며, 인슐린 내성 검사는 120분에서 새싹추출물과 메트포민군이 고지방식이군보다 유의성 있게 감소하였다. 혈중 지질 농도 변화에서 총콜레스테롤, 중성지방 그리고 LDL 콜레스테롤 농도는 고지방식이군에 비해 새싹추출물과 메트포민군에서 유의적으로 감소하였고, HDL 콜레스테롤 농도는 고지방식이군에 비해 새싹추출물과 메트포민군에서 증가하였다. 간독성의 지표인 glutamate oxaloacetate transaminase와 glutamate pyruvate transaminase 효소 활성도는 메트포민투여군과 고지방식이군을 제외한 실험군들 간에 유의성이 나타나지 않았다. 혈중 인슐린과 렙틴 농도는 고지방식이군에 비해 새싹추출물과 메트포민군에서 유의적으로 감소하였다. 이상의 결과를 바탕으로 새싹추출물은 제2형 당뇨 마우스에서 체중을 감소시키고 혈중지질 대사 이상을 조절하면서 인슐린 저항성을 감소시켜 혈당을 개선하므로 항당뇨 효과가 있는 우수한 식품 소재로서의 개발 가능성을 시사하고 있다.

Keywords

References

  1. Park CM, Kwak BH, Sharma BR, Rhyu DY. 2012. Anti-diabetic effect of Opuntia humifusa stem extract. Kor J Pharmacogn 43: 308-315.
  2. Krentz AJ, Bailey CJ. 2005. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65: 385-411. https://doi.org/10.2165/00003495-200565030-00005
  3. Rondinone CM. 2005. Diabetes: the latest developments in inhibitors, insulin sensitizers. Expert Opin Ther Target 9: 415-418. https://doi.org/10.1517/14728222.9.2.415
  4. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. 2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116: 1784-1792. https://doi.org/10.1172/JCI29126
  5. Lee SH, Lim SL, Lee YM, Hur JM, Lee HS, Kim DK. 2011. Anti-diabetic effects of Triticum aestivum L. water extracts in db/db mice as an animal model of diabetes mellitus type II. Kor J Pharmacogn 41: 282-288.
  6. Khalila AW, Zebb A, Mahmoodb F, Tariqb S, Khattakb AB, Shaha H. 2007. Comparison of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT-Food Sci Technol 40: 937-945. https://doi.org/10.1016/j.lwt.2006.05.009
  7. Peroni DG, Bonomo B, Casarotto S, Boner AL, Piacentini GL. 2012. How changes in nutrition have influenced the development of allergic diseases in childhood. Ital J Pediatr 38: 22: 1-7. https://doi.org/10.1186/1824-7288-38-1
  8. Kim HS, Jeon IH, Kang HJ, Mao X, Mok JY, Lee BS, Cheon CJ, Jang SI. 2013. Antioxidant effects of ethanol extracts of baby vegetables. J Nat Sci 23: 89-105.
  9. Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI. 2000. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49: 2063-2069. https://doi.org/10.2337/diabetes.49.12.2063
  10. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. 2001. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108: 1167-1174. https://doi.org/10.1172/JCI13505
  11. Kim OK, Oak CH, Jeong JM, Lee JW, Shin MH, Kim NH. 2012. A case of metformin-induced lactic acidosis with acute kidney injury misdiagnosed as hepatorenal syndrome in a cirrhosis patient. Korean J Med 82: 241-246. https://doi.org/10.3904/kjm.2012.82.2.241
  12. Altun E, Kaya B, PaydasS, Sariakcali B, Karayaylali I. 2014. Lactic acidosis induced by metformin in a chronic hemodialysis patient with diabetes mellitus type 2. Hemodial Int 18: 529-531. https://doi.org/10.1111/hdi.12109
  13. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  14. Reitman S, Frankel S. 1957. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28: 56-63.
  15. Sunil C, Duraipandiyan V, Agastian P, Ignacimuthu S. 2012. Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem Toxicol 50: 4356-4363. https://doi.org/10.1016/j.fct.2012.08.046
  16. Woods SC, Seeley RJ, Rushing PA, D'Alessio D, Tso P. 2003. A controlled high-fat diet induces an obese syndrome in rats. J Nutr 133: 1081-1087.
  17. Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL. 2003. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37: 649-661. https://doi.org/10.1016/S0896-6273(03)00063-1
  18. Klok MD, Jakobsdottir S, Drent ML. 2007. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8: 21-34. https://doi.org/10.1111/j.1467-789X.2006.00270.x
  19. Al-Shoumer KA, Al-Asousi AA, Doi SA, Vasanthy BA. 2008. Serum leptin and its relationship with metabolic variables in Arabs with type 2 diabetes mellitus. Ann Saudi Med 28: 367-370. https://doi.org/10.4103/0256-4947.51692
  20. Myers MG, Cowley MA, Munzberg H. 2008. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70: 537-556. https://doi.org/10.1146/annurev.physiol.70.113006.100707
  21. Gilbert ER, Fu Z, Liu D. 2011. Development of a nongenetic mouse model of type 2 diabetes. Exp Diabetes Res 2011: 1-12.
  22. Zhang S, Zhang Q, Zhang L, Li C, Jiang H. 2013. Expression of ghrelin and leptin during the development of type 2 diabetes mellitus in a rat model. Mol Med Rep 7: 223-228.
  23. Sahu A, Nguyen L, O'Doherty RM. 2002. Nutritional regulation of hypothalamic leptin receptor gene expression is defective in diet-induced obesity. J Neuroendocrinol 14: 887-893. https://doi.org/10.1046/j.1365-2826.2002.00856.x
  24. Levin BE, Dunn-Meynell AA, Ricci MR, Cummings DE. 2003. Abnormalities of leptin and ghrelin regulation in obesity-prone juvenile rats. Am J Physiol Endocrinol Metab 285: E949-957. https://doi.org/10.1152/ajpendo.00186.2003

Cited by

  1. The Association Between Social Support and Impaired Fasting Glucose and Type 2 Diabetes vol.22, pp.4, 2016, https://doi.org/10.15616/BSL.2016.22.4.189