References
- Bouchelouche K, Oehr P (2008). Positron emission tomography and positron emission tomography/computerized tomography of urological malignancies: an update review. J Urol, 179, 34-45.
- Effert P, Beniers AJ, Tamimi Y, et al (2004). Expression of glucose transporter 1 (Glut-1) in cell lines and clinical specimens from human prostate adenocarcinoma. Anticancer Res, 24, 3057-63.
- Effert PJ, Bares R, Handt S, et al (1996). Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol, 155, 994-8. https://doi.org/10.1016/S0022-5347(01)66366-3
- Godoy A, Ulloa V, Rodriguez F, et al (2006). Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol, 207, 614-27. https://doi.org/10.1002/jcp.20606
- Han EJ, H OJ, Choi WH, et al (2010). Significance of incidental focal uptake in prostate on 18-fluoro-2-deoxyglucose positron emission tomography CT images. Br J Radiol, 83, 915-20. https://doi.org/10.1259/bjr/19887771
- Hasbek Z, Yucel B, Salk I, et al (2014). Potential impact of atelectasis and primary tumor glycolysis on F-18 FDG PET/CT on survival in lung cancer patients. Asian Pac J Cancer Prev, 15, 4085-9. https://doi.org/10.7314/APJCP.2014.15.9.4085
- Hofer C, Laubenbacher C, Block T, et al (1999). Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol, 36, 31-5.
- Hoh CK, Seltzer MA, Franklin J, et al (1998). Positron emission tomography in urological oncology. J Urol, 159, 347-56. https://doi.org/10.1016/S0022-5347(01)63916-8
- Hwang I, Chong A, Jung SI, et al (2013). Is further evaluation needed for incidental focal uptake in the prostate in 18-fluoro-2-deoxyglucose positron emission tomographycomputed tomography images? Ann Nucl Med, 27, 140-5. https://doi.org/10.1007/s12149-012-0663-7
- Kao PF, Chou YH, Lai CW (2008). Diffuse FDG uptake in acute prostatitis. Clin Nucl Med, 33, 308-10. https://doi.org/10.1097/RLU.0b013e3181662f8b
- Lawrentschuk N, Davis ID, Bolton DM, et al (2006). Positron emission tomography and molecular imaging of the prostate: an update. BJU Int, 97, 923-31. https://doi.org/10.1111/j.1464-410X.2006.06040.x
- Levi J, Cheng Z, Gheysens O, et al (2007). Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug Chem, 18, 628-34. https://doi.org/10.1021/bc060184s
- Minamimoto R, Uemura H, Sano F, et al (2011). The potential of FDG-PET/CT for detecting prostate cancer in patients with an elevated serum PSA level. Ann Nucl Med, 25, 21-7. https://doi.org/10.1007/s12149-010-0424-4
- Oyama N, Akino H, Suzuki Y, et al (1999). The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol, 29, 623-9. https://doi.org/10.1093/jjco/29.12.623
- Piccardo A, Paparo F, Picazzo R, et al (2014). Value of fused (18) F-choline-PET/MRI to evaluate prostate cancer relapse in patients showing biochemical recurrence after ebrt: preliminary results. Biomed Res Int, 2014, 103718.
- Picchio M, Berardi G, Fodor A, et al (2014). (11)C-Choline PET/CT as a guide to radiation treatment planning of lymph-node relapses in prostate cancer patients. Eur J Nucl Med Mol Imaging, 41, 1270-9.
- Powles T, Murray I, Brock C, et al (2007). Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur Urol, 51, 1511-20; discussion 20-1. https://doi.org/10.1016/j.eururo.2007.01.061
- Reinicke K, Sotomayor P, Cisterna P, et al (2012). Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue. J Cell Biochem, 113, 553-62. https://doi.org/10.1002/jcb.23379
- Scher B, Seitz M, Albinger W, et al (2007). Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging, 34, 45-53. https://doi.org/10.1007/s00259-006-0190-7
- Shiiba M, Ishihara K, Kimura G, et al (2012). Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. Ann Nucl Med, 26, 138-45. https://doi.org/10.1007/s12149-011-0551-6
- Zhao JY, Ma XL, Li YY, et al (2014). Diagnostic Accuracy of 18F-FDG-PET in patients with testicular cancer: a metaanalysis. Asian Pac J Cancer Prev, 15, 3525-31. https://doi.org/10.7314/APJCP.2014.15.8.3525
Cited by
- Role of PET/CT in Treatment Planning for Head and Neck Cancer Patients Undergoing Definitive Radiotherapy vol.15, pp.24, 2015, https://doi.org/10.7314/APJCP.2014.15.24.10899
- Importance of PET/CT Scan Use in Planning Radiation Therapy for Lymphoma vol.16, pp.5, 2015, https://doi.org/10.7314/APJCP.2015.16.5.2051
- Multicentre study of 18F-FDG-PET/CT prostate incidental uptake vol.33, pp.9, 2015, https://doi.org/10.1007/s11604-015-0453-y
- Clinical relevance of incidental prostatic lesions on FDG-PET/CT Scan vol.6, pp.5, 2016, https://doi.org/10.1007/s13629-016-0124-5
- Clinical significance of incidental prostatic fluorine-18-fluorodeoxyglucose uptake in the diagnosis of infectious prostatitis in adult males vol.38, pp.6, 2017, https://doi.org/10.1097/MNM.0000000000000668
- F-labelled fluorodeoxyglucose uptake on positron emission tomography/computed tomography: A five-year review vol.9, pp.9, 2017, https://doi.org/10.4329/wjr.v9.i9.350