DOI QR코드

DOI QR Code

Synthesis and mechanical properties of flax fabric reinforced geopolymer composites

  • Assaedi, Hasan S. (Department of Imaging & Applied Physics, Curtin University) ;
  • Alomayri, Thamer S. (Department of Imaging & Applied Physics, Curtin University) ;
  • Shaikh, Faiz U.A. (Department of Civil Engineering, Curtin University) ;
  • Low, It-Meng (Department of Imaging & Applied Physics, Curtin University)
  • Received : 2014.05.03
  • Accepted : 2014.06.24
  • Published : 2014.11.27

Abstract

Geopolymer composites reinforced with different layers of woven flax fabric are fabricated using lay- up technique. Mechanical properties, such as flexural strength, flexural modulus and fracture toughness of geopolymer composites reinforced with 2.4, 3 and 4.1 wt% flax fibres are studied. The fracture surfaces of the composites are also examined using scanning electron microscopy. The results show that all the mechanical properties of the composites are improved by increasing the flax fibre contents. It is also found that the mechanical properties of flax fabric reinforced geopolymer composites are superior to pure geopolymer matrix. Micro-structural analysis of fracture surface of the composites indicated evidence of various toughening mechanisms by flax fabrics in the composites.

Keywords

Acknowledgement

Supported by : Curtin University

References

  1. Abanilla, M.A., Karbhari, V.M. and Li, Y. (2006), "Interlaminar and intralaminar durability characterization of wet layup carbon/epoxy used in external strengthening", Compos. Part B, 37(7-8), 650-661. https://doi.org/10.1016/j.compositesb.2006.02.023
  2. Alamri, H. and Low, I.M. (2012), "Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites", Polym. Test., 31(5), 620-628. https://doi.org/10.1016/j.polymertesting.2012.04.002
  3. Alomayri, T. and Low, I.M. (2013), "Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites", J. Asian Ceram. Soc., 1(1), 30-34. https://doi.org/10.1016/j.jascer.2013.01.002
  4. Alzeer, M. and MacKenzie, K.J.D. (2012), "Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres", J. Mater. Sci., 47(19), 6958-6965. https://doi.org/10.1007/s10853-012-6644-3
  5. Alzeer, M. and MacKenzie, K. (2013), "Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres (phormium tenax)", Appl. Clay Sci., 75-76, 148-152. https://doi.org/10.1016/j.clay.2013.03.010
  6. Barbosa, V., MacKenzie, K. and Thaumaturgo, C. (2000), "Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers", Int. J. Inorg. Mater., 2(4), 309-317. https://doi.org/10.1016/S1466-6049(00)00041-6
  7. Bessadok, A., Marais, S. Gouanve, F. Colasse, L. Zimmerlin, I. Roudesli, S. and Metayer, M. (2007), "Effect of chemical treatments of alfa (stipa tenacissima) fibres on water-sorption properties", Compos. Sci. Technol., 67(3-4), 685-697. https://doi.org/10.1016/j.compscitech.2006.04.013
  8. Bledzki, A.K., Reihmane, S. and Gassan, J. (1996), "Properties and modification methods for vegetable fibers for natural fiber composites", J. Appl. Polym. Sci., 59(8), 1329-1336. https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0
  9. Buchwald, A., Dombrowski, K. and Weil, M. (2005), "The influence of calcium content on the performance of geopolymeric binder especially the resistance against acids", 4th International Conference on Geopolymers , Quentin, France.
  10. Davies, G.C. and Bruce, D.M. (1998), "Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers" Tex. Res. J., 68(9), 623-629. https://doi.org/10.1177/004051759806800901
  11. Davidovits, J. (199), "Geopolymers: inorganic polymeric new materials", J. Therm. Anal., 37(8),1633-1656.
  12. Duxson, P., Fernandez,, A. Provis, J.L. Lukey, G.C. Palomo, A. and Deventer, J.S.J. (2007), "Geopolymer technology: the current state of the art", J. Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  13. Dweib, M.A., Hu, B. O'Donnell, A. Shenton, H.W. and Wool, R.P. (2004), "All natural composite sandwich beams for structural applications", Compos. Struct., 63(2), 147-157. https://doi.org/10.1016/S0263-8223(03)00143-0
  14. Hardjito, D., Wallah, S.E. Sumajouw, D.M.J. and Rangan, B.V. (2004), "On the development of fly ash based geopolymer concrete", ACI Mater. J., 101(6),467-472.
  15. Higgins, D.D. (2003), "Increased sulfate resistance of ggbs concrete in the presence of carbonate", Cem. Concr. Compos., 25(8), 913-919. https://doi.org/10.1016/S0958-9465(03)00148-3
  16. Hung, T.D., Pernica, D. Kroisova, D. Bortnovsky, O. Louda, P. and Rylichova, V. (2008), "Composites base on geopolymer matrices: preliminary fabrication, mechanical properties and future applications", Adv. Mat. Res., 55-57, 477-480. https://doi.org/10.4028/www.scientific.net/AMR.55-57.477
  17. Joseph, P.V., Joseph, K. and Thomas, S. (1999), "Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites", Compos. Sci. Technol., 59(11), 1625-1640. https://doi.org/10.1016/S0266-3538(99)00024-X
  18. Kriven, W.M., Bell, J.L. and Gordon, M. (2003), "Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites", Ceram. Trans., 153(4), 227-250.
  19. Lemougna, P.N., MacKenzie, K. and Melo, U.F.C. (2011), "Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash", Ceram. Int., 37(8), 3011-3018. https://doi.org/10.1016/j.ceramint.2011.05.002
  20. Li, Z., Ding, Z. and Zhang, Y. (2004), "Development of sustainable cementitious materials", Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China.
  21. Lin, T., Jia, D. He, P. Wang, M. and Liang, D. (2008), "Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites", Mater. Sci. Eng., A, 497(1-2), 181-185. https://doi.org/10.1016/j.msea.2008.06.040
  22. Lin, X., Silsbee, M.R. Roy, D.M. Kessler, K. and Blankenhorn, P.R. (1994), "Approaches to improve the properties of wood fiber reinforced cementitious composites", Cem. Concr. Res., 24(8), 1558-1566. https://doi.org/10.1016/0008-8846(94)90170-8
  23. Low, I.M., McGrath, M. Lawrence, D. Schmidt, P. Lane, J. Latella, B.A. and Sim, K.S. (2007), "Mechanical and fracture properties of cellulose-fibre-reinforced epoxy laminates", Composites Part A, 38(3), 963-974. https://doi.org/10.1016/j.compositesa.2006.06.019
  24. Low, I.M., Schmidt, P. and Lane, J. (1995), "Synthesis and properties of cellulose-fibre/epoxy laminates", J. Mater. Sci. Lett., 14(3),170-172. https://doi.org/10.1007/BF00318245
  25. Low, I.M., Somers, J. and Pang, W.K. (2007), "Synthesis and properties of recycled Paper-nano-clay-reinforced epoxy eco-composites", Key Eng. Mater., 334-335, 609-612. https://doi.org/10.4028/www.scientific.net/KEM.334-335.609
  26. Low, I.M., Somers, J. Kho, H.S. Davies, I.J. and Latella, B.A. (2009), "Fabrication and properties of recycled cellulose fibre-reinforced epoxy composites", Compos. Interfaces, 7(9), 659-669.
  27. McGrath, M., Vilaiphand, W. Vaihola, S. Lopez, A. Low, I.M. and Latella, B.A. (2004), "Synthesis and properties of clay-ZrO2-cellulose fibre-reinforced polymeric nano-hybrids", Structural Integrity and Fracture International Conference (SIF'04), Brisbane, Australia.
  28. McLellan, B.C., Williams, R.P. Lay, J. Riessen, A.V. and Corder, G.D. (2011), "Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement", J. Cleaner Prod., 19(9-10), 1080-1090. https://doi.org/10.1016/j.jclepro.2011.02.010
  29. McMullen, P. (1984), "Fibre/resin composites for aircraft primary structures: a short history", Compos., 15(3), 222-230. https://doi.org/10.1016/0010-4361(84)90279-9
  30. Panaitescu, D.M., Vuluga, D.M. Paven, H. Iorga, M.D. Ghiurea, M. Matasaru, I. and Nechita, P. (2008), "Properties of polymer composites with cellulose microfibrils", Mol. Cryst. Liq. Cryst., 484(1), 86-98.
  31. Pacheco-Torgal, F., Abdollahnejad, Z. Camoes, A.F. Jamshidi, M. and Ding, Y. (2012), "Durability of alkali-activated binders: a clear advantage over portland cement or an unproven issue?", Constr. Build. Mater., 30, 400-405. https://doi.org/10.1016/j.conbuildmat.2011.12.017
  32. Pernica, D., Reis, P.N.B. Ferreira, J.A.M. and Louda, P. (2010), "Effect of test conditions on the bending strength of a geopolymer- reinforced composite", J. Mater. Sci., 45(3), 744-749. https://doi.org/10.1007/s10853-009-3994-6
  33. Rahman, M.M., Rashid, M.H. Hossain, M.A. Hasan, M.T. and Hasan, M.K. (2011), "Performance evaluation of bamboo reinforced concrete beam", IJET-IJENS, 11(4), 142-146.
  34. Rill, E., Lowry, D.R. and Kriven, W.M. (2010), "Properties of basalt fiber reinforced geopolymer composites", Ceram. Eng. Sci. Proc., 31(10), 57-67.
  35. Reis, J.M.L. (2006), "Fracture and flexural characterization of natural fiber-reinforced polymer concrete", Constr. Build. Mater., 20(9), 673-678. https://doi.org/10.1016/j.conbuildmat.2005.02.008
  36. Satyanarayana, K.G., Sukumaran, K. Mukherjee, P.S. Pavithran, C. and Pillai, S.G.K. (1990), "Natural fibre-polymer composites", Cement Concrete Compos., 12(2), 117-136.
  37. Silva, F.A., Filho, R.D.T. Filho, J.A.M. and Fairbairn, E.M.R. (2010), "Physical and mechanical properties of durable sisal fiber-cement composites", Constr. Build. Mater., 24(5), 777-785. https://doi.org/10.1016/j.conbuildmat.2009.10.030
  38. Silva, F.A., Mobasher, B. and Filho, R.D.T. (2009), "Cracking mechanisms in durable sisal fiber reinforced cement composites", Cement Concrete Compos., 31(10), 721-730. https://doi.org/10.1016/j.cemconcomp.2009.07.004
  39. Silva, F.J. and Thaumaturgo, C. (2003), "Fibre reinforcement and fracture response in geopolymeric mortars", Fatigue Fract. Eng. Mater. Struct., 26(2), 167-172. https://doi.org/10.1046/j.1460-2695.2003.00625.x
  40. Sim, J., Park, C. and Moon, D.Y. (2005), "Characteristics of basalt fiber as a strengthening material for concrete structures", Compos. Part B, 36(6), 504-512. https://doi.org/10.1016/j.compositesb.2005.02.002
  41. Tanobe, V., Sydenstricker, T. Munaro, M. and Amico, S.C. (2005), "A comprehensive characterization of chemically treated brazilian sponge-gourds (luffa cylindrica)", Polym. Test., 24(4), 474-482. https://doi.org/10.1016/j.polymertesting.2004.12.004
  42. Toledo, F.R.D., Ghavami, K. and England, G.L. (2003), "Development of vegetable fibre-mortar composites of improved durability", Cement Concrete Compos., 25(2), 185-196. https://doi.org/10.1016/S0958-9465(02)00018-5
  43. Vijai, K., Kumuthaa, R. and Vishnuram, B.G. (2012), "Properties of glass fibre reinforced geopolymer concrete composites", Asian J. Civ. Eng., 13(4), 511-520.
  44. Zadorecki, P. and Michell, A.J. (1989), "Future prospects for wood cellulose as reinforcement in organic polymer composites", Polym. Compos., 10(2), 69-77. https://doi.org/10.1002/pc.750100202
  45. Zeng, Q.H., Yu, A.B. (Max)Lu, G.Q. and Paul, D.R. (2005), "Clay-based polymer nanocomposites: research and commercial development", J. Nanosci. Nanotech., 5(10), 1574-1592. https://doi.org/10.1166/jnn.2005.411
  46. Zhao, Q., Nair, B., Rahimian, T. and Balaguru, P. (2007), "Novel geopolymer based composites with enhanced ductility", J. Mater. Sci., 42(9), 3131-3137. https://doi.org/10.1007/s10853-006-0527-4

Cited by

  1. The influence of fibre pre-treatment on the mechanical properties of the geopolymer composites vol.322, pp.None, 2020, https://doi.org/10.1051/matecconf/202032201012
  2. The Fly-Ash Based Geopolymer Composites as an Innovative Material for Circular vol.322, pp.None, 2014, https://doi.org/10.1051/matecconf/202032201016