DOI QR코드

DOI QR Code

Biocomposites from polypropylene and corn cob: Effect maleic anhydride grafted polypropylene

  • Husseinsyah, Salmah (School of Materials Engineering, Universiti Malaysia Perlis) ;
  • Marliza, M.Z. (School of Materials Engineering, Universiti Malaysia Perlis) ;
  • Selvi, E. (School of Materials Engineering, Universiti Malaysia Perlis)
  • Received : 2014.05.03
  • Accepted : 2014.06.24
  • Published : 2014.11.27

Abstract

Biocomposites from polypropylene (PP) and corn cob (CC) were investigated. The effect of corn cob content and maleic anhydride polypropylene (MAPP) as compatibilizer were studied. Results showed that addition of corn cob (CC) in PP have decreased the tensile strength and elongation at break, whereas modulus of elasticity of biocomposites increased. The biocomposites with the MAPP as compatibilizer exhibited higher tensile strength and modulus of elasticity compared biocomposites without MAPP. The morphology study of biocomposites indicates that enhanced the interfacial interaction and adhesion between filler and matrix with the presence of MAPP.

Keywords

References

  1. Acha, B.A., Aranguren, M.I. and Marcovich, N.E. (2003), "Composites from PMMA modified thermoset and chemically treated woodflour", Polym. Eng. Sci., 43(3), 999-1010. https://doi.org/10.1002/pen.10084
  2. Aziz, S.H., Ansell, M.P., Clarke, S.J. and Panteny, S.R. (2005), "Modified polyester resins for natural fibre composites", Compos. Sci. Technol., 65, 525-535. https://doi.org/10.1016/j.compscitech.2004.08.005
  3. Chun, K.S., Husseinsyah, S. and Osman, H. (2013a), "Utilization of cocoa pod husk as filler in polypropylene biocomposites: effect of maleated polypropylene", J. Thermoplast. Compos. Mater., In Press, DOI: 10.1177/0892705713513291.
  4. Chun, K.S., Husseinsyah, S. and Osman, H. (2013b), "Tensile properties of polypropylene/cocoa pod husk biocomposites: effect of maleated polypropylene", Adv. Mater. Res., 747, 645-648. https://doi.org/10.4028/www.scientific.net/AMR.747.645
  5. Faisal, A., Salmah, H. and Kamarudin, H. (2013), "Mechanical, morphological and thermal properties of chitosan filled polypropylene composites: the effect of binary modifying agent", Compos. Part A, 46, 89-95. https://doi.org/10.1016/j.compositesa.2012.10.014
  6. John, M.J. and Thomas, S. (2008), "Biofibres and biocomposites", Carbohydr. Polym., 71(8), 343-345. https://doi.org/10.1016/j.carbpol.2007.05.040
  7. Kim, H.S., Lee, B.H., Choi, S.W., Kim, S. and Kim, H.J. (2007), "The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composite", Compos. Part A, 38(6), 1473-1482. https://doi.org/10.1016/j.compositesa.2007.01.004
  8. Kumari, R., Ito, H., Takatani, M., Uchiyama, M. and Okamoto, T. (2007), "Fundamental studies on wood/cellulose-plastic composites: effects of composition and cellulose dimension on the properties of cellulose/PP composite", J. Wood Sci., 53 (6), 470-480. https://doi.org/10.1007/s10086-007-0889-5
  9. Marti Ferrer, F., Vilaplana, F., Ribes Greus, A., Benedito Borras, A. and Sanz Box, C. (2005), "Flour rice husk as filler in block copolymer polypropylene: effect of different coupling agents", J. Appl. Polym. Sci., 99, 1823-1831.
  10. Panthapulakkal, S. and Sain, M. (2007), "Agro-residue reinforced high-density polyethylene composites: fiber characterization and analysis of composite properties", Compos., 38(6), 1445-1446. https://doi.org/10.1016/j.compositesa.2007.01.015
  11. Park, J.M., Quang, S.T., Hwang, B.S. and DeVries, K.L. (2006), "Interfacial evaluation of modified juta and hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymer (PP-MAPP) composites using micromechanical technique and nondestruction acoustic emission", Compos. Sci Technol., 66, 2686-2699. https://doi.org/10.1016/j.compscitech.2006.03.014
  12. Salmah, H., Bee Ying, L. and Teh, P.L. (20120), "Melt Rheological and Thermal Properties of Low Density Polyethylene/Palm Kernel Shell Composites: Effect of Polyethylene Acrylic Acid", International Journal Polymeric Material, 61, 1-11, 2012 https://doi.org/10.1080/00914037.2010.551349
  13. Tserki, V., Matzinos, P. and Panayiotou, C. (2006), "Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour", Compos. Part A, 37, 1231-1238. https://doi.org/10.1016/j.compositesa.2005.09.004
  14. Wu, C.S. (2005), "Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid-characterization and biodegradability assessment", Macromol. Biosci., 5, 352-361. https://doi.org/10.1002/mabi.200400159
  15. Yang, H.S., Kim, H.J., Park, H.J., Lee, B.J. and Hwang, T.S. (2007), "Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites", Comp. Struct., 77, 45-55. https://doi.org/10.1016/j.compstruct.2005.06.005
  16. Yeng, C.M., Salmah, H. and Sam, S.T. (2013a), "Corn cob filled chitosan biocomposites films by cross-linking with glutaraldehyde", Bioresour., 8(2), 2910-2922.
  17. Yeng, C.M., Salmah, H. and Sam, S.T. (2013b), "Modified corn cob filled chitosan biocomposites films", Polm. Plast. Technol. Eng., 52(14), 1496-1502. https://doi.org/10.1080/03602559.2013.820752
  18. Yeng, C.M., Salmah, H. and Sam, S.T. (2013c), "Corn cob filled chitosan biocomposite films", Adv. Mater. Res., 747, 649-652. https://doi.org/10.4028/www.scientific.net/AMR.747.649
  19. Yuan, X., Jayaraman, K. and Bhattacharyya, D. (2004), "Effects of plasma treatment in enhancing the perfornance of woodfibre-polypropylena composites", Compos. Part A, 35, 1363-1374. https://doi.org/10.1016/j.compositesa.2004.06.023

Cited by

  1. Morphology and Physical/End-Use Properties of Recycled Polypropylene-Corn Cob Powder Composites vol.11, 2017, https://doi.org/10.18052/www.scipress.com/IJET.11.1
  2. Development of Green Composites Based on Polypropylene and Corncob Agricultural Residue vol.27, pp.8, 2014, https://doi.org/10.1007/s10924-019-01462-7
  3. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications vol.13, pp.13, 2014, https://doi.org/10.3390/polym13132170
  4. MICROWAVE IRRADIATION OPTIMIZATION FOR EFFICIENT LIGNIN REMOVAL FROM COCOA SHELL WASTE USING ALKALI vol.22, pp.2, 2014, https://doi.org/10.31436/iiumej.v22i2.1608