DOI QR코드

DOI QR Code

Adsorption of Co(II), Ni(II), Pb(II) and U(VI) from Aqueous Solutions using Polyaniline/Graphene Oxide Composites

  • Liu, Zhengjie (School of Chemical Engineering, Shandong University of Technology) ;
  • Yang, Jianwei (Shandong Moris Technology Co., Ltd.) ;
  • Li, Changzhen (School of Chemical Engineering, Shandong University of Technology) ;
  • Li, Jiaxing (Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Jiang, Yajuan (Quality Inspection and Analysis Center, Sinopec Beijing Yanshan Company) ;
  • Dong, Yunhui (School of Chemical Engineering, Shandong University of Technology) ;
  • Li, Yueyun (School of Chemical Engineering, Shandong University of Technology)
  • Received : 2014.04.30
  • Accepted : 2014.06.20
  • Published : 2014.12.01

Abstract

Polyaniline modified graphene oxide (PANI/GO) composites were synthesized by dilute polymerization technique and were characterized by Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM). The characterization results indicated that polyaniline molecules were successfully grafted on GO surfaces. The application of PANI/GO composites to the adsorption of heavy metals from aqueous solutions was investigated under ambient conditions. The maximum adsorption capacities of Co(II), Ni(II), Pb(II) and U(VI) ions on PANI/GO composites calculated from Langmuir models are 22.28, 25.67, 65.40 and 1552.31 mg/g, respectively. The excellent adsorption capacity suggests that PANI/GO composites can be applied as a promising adsorbent in heavy metal pollution cleanup in environmental pollution management.

Keywords

References

  1. Wang, Y., Feng, X. H., Villalobos, M., Tan, W. F. and Liu, F., Chem. Geol., 292, 25 (2012).
  2. Navarro, R., Wada, S. and Tatsumi, K., J. Hazard. Mater. B, 123, 203 (2005). https://doi.org/10.1016/j.jhazmat.2005.03.048
  3. Juang, R. S., Lin, S. H. and Wang, T. Y., Chemosphere, 53, 1221 (2003). https://doi.org/10.1016/S0045-6535(03)00578-2
  4. Kallury, K. M. R., Lee, W. E. and Thompson, M., Anal. Chem., 65, 2459 (1993). https://doi.org/10.1021/ac00066a010
  5. Bessbousse, H., Rhlalou, T., Verch, J. F. and Lebrun, L., J. Membr. Sci., 307, 249 (2008). https://doi.org/10.1016/j.memsci.2007.09.027
  6. Guan, Y., Mao, Y., Wei, D., Wang, X. and Zhu, P., Korean J. Chem. Eng., 30, 1810 (2013). https://doi.org/10.1007/s11814-013-0103-y
  7. Xiao, J., Zhao, L., Zhang, W., Liu, X. and Chen, Y., Korean J. Chem. Eng., 31, 253 (2014). https://doi.org/10.1007/s11814-013-0207-4
  8. Hu, J., Shao, D. D., Chen, C. L., Sheng, G. D., Li, J. X., Wang, X. K. and Nagatsu, M., J. Phys. Chem. B, 114, 6779 (2010). https://doi.org/10.1021/jp911424k
  9. Yang, S. B., Hu, J., Chen, C. L., Shao, D. D., Wang, X. K., Environ. Sci. Technol., 45, 3621 (2011). https://doi.org/10.1021/es104047d
  10. Li, L. X., Song, H. H., Zhang, Q. C., Yao, J. Y. and Chen, X. H., J. Power Sources, 187, 268 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.075
  11. Mu, S. L., Biosens. Bioelectron., 21, 1237 (2006). https://doi.org/10.1016/j.bios.2005.05.007
  12. Mu, S. L., Synth. Met., 156, 202 (2006). https://doi.org/10.1016/j.synthmet.2005.11.015
  13. Mazloum-Ardakani, M., Sheikh-Mohseni, M. A. and Abdollahi-Alibeik, M., J. Mol. Liq., 178, 63 (2013). https://doi.org/10.1016/j.molliq.2012.11.008
  14. Kumar, P. A., Chakraborty, S. and Ray, M., Chem. Eng. J., 141, 130 (2008). https://doi.org/10.1016/j.cej.2007.11.004
  15. Zhang, Y., Zhu, C. X. and Kan, J. Q., J. Appl. Polym. Sci., 109, 3024 (2008). https://doi.org/10.1002/app.28414
  16. Liu, M. C., Chen, C. L., Hu, J., Wu, X. L. and Wang, X. K., J. Phys. Chem. C, 115, 25234 (2011). https://doi.org/10.1021/jp208575m
  17. Sun, Y. B., Wang, Q., Chen, C. L., Tan, X. L. and Wang, X. K., Environ. Sci. Technol., 46, 6020 (2012). https://doi.org/10.1021/es300720f
  18. Zhao, G. X., Jiang, L., He, Y. D., Li, J. X., Dong, H. L., Wang, X. K. and Hu, W. P., Adv. Mater., 23, 3959 (2011). https://doi.org/10.1002/adma.201101007
  19. Zhao, G. X., Ren, X. M., Gao, X., Tan, X. L., Li, J. X., Chen, C. L., Huang, Y. Y. and Wang, X. K., Dalton Trans., 40, 10945 (2011). https://doi.org/10.1039/c1dt11005e
  20. Zhao, G. X., Li, J. X., Ren, X. M., Chen, C. L. and Wang, X. K., Environ. Sci. Technol., 45, 10454 (2011). https://doi.org/10.1021/es203439v
  21. Yan, X. B., Chen, J. T., Yang, J., Xue, Q. J. and Miele, P., ACS Appl. Mater. Interfaces, 2, 2521 (2010). https://doi.org/10.1021/am100293r
  22. Deze, E. G., Papageorgiou, S. K., Favvas, E. P. and Katsaros, F. K., Chem. Eng. J. 209, 537 (2012). https://doi.org/10.1016/j.cej.2012.07.133
  23. Chang, P. P., Wang, X. K., Yu, S. M. and Wu, W. S., Colloids Surf. A, 302, 75 (2007). https://doi.org/10.1016/j.colsurfa.2007.01.040
  24. Sheng, G. D., Hu, J., Yang, S. T., Ren, X. M., Li, J. X., Chen, Y. X. and Wang, X. K., Radiochim. Acta, 98, 291 (2010).
  25. Yang, X., Yang, S. B., Yang, S. T., Hu, J., Tan, X. L. and Wang, X. K., Chem. Eng. J. 168, 86 (2011). https://doi.org/10.1016/j.cej.2010.12.039
  26. Kowal-Fouchard, A., Drot, R., Simoni, E. and Ehrhardt, J. J., Environ. Sci. Technol., 38, 1399 (2004). https://doi.org/10.1021/es0348344
  27. Shao, D. D., Jiang, Z. Q., Wang, X. K., Li, J. X. and Meng, Y. D., J. Phys. Chem. B, 113, 860 (2009). https://doi.org/10.1021/jp8091094
  28. Langmuir, I., J. Am. Chem. Soc., 40, 1361 (1918). https://doi.org/10.1021/ja02242a004
  29. Ren, X. M., Wang, S. W., Yang, S. T., Li, J. X., J. Radioanal. Nucl. Chem., 283, 253 (2010). https://doi.org/10.1007/s10967-009-0323-0
  30. Chen, C. L., Li, J. X., Zhao, D. L., Tan, X. L. and Wang, X. K., Colloids Surf. A, 302, 449 (2007). https://doi.org/10.1016/j.colsurfa.2007.03.007
  31. Sun, Y. B., Shao, D. D., Chen, C. L., Yang, S. B. and Wang, X. K., Environ. Sci. Technol., 47, 9904 (2013). https://doi.org/10.1021/es401174n
  32. Sylwester, E. R., Hudson, E. A. and Allen, P. G., Geochim. Cosmochim. Ac., 64, 2431 (2000). https://doi.org/10.1016/S0016-7037(00)00376-8
  33. Han, R. P., Zou, W. H., Wang, Y. and Zhu, L., J. Environ. Radioactiv., 93, 127 (2007). https://doi.org/10.1016/j.jenvrad.2006.12.003
  34. Li, S. N., Bai, H. B., Wang, J., Jing, X. Y., Liu, Q. and Zhang, M. L., Chem. Eng. J., 193 372 (2012).
  35. Pang, C., Liu, Y. H., Cao, X. H., Li, M., Huang, G. L., Hua, R., Wang, C. X., Liu, Y. and An, X. F., Chem. Eng. J., 170, 1 (2011). https://doi.org/10.1016/j.cej.2010.10.068
  36. VikasBhat, S., Melo, J. S., Chaugule, B. B. and D'Souza, S. F., J. Hazard. Mat., 158, 628 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.042
  37. Humelnicu, M., Dinu, V. and Dragan, E., J. Hazard. Mat., 185, 447 (2011). https://doi.org/10.1016/j.jhazmat.2010.09.053
  38. Saad, E. M., Mansour, R. A., El-Asmy, A., El-Shahawi, M. S., Talanta, 76, 1041 (2008). https://doi.org/10.1016/j.talanta.2008.04.065
  39. Feng, Y. F., Jiang, H., Li, S. N., Wang, J., Jing, X. Y., Wang, Y. R. and Chen, M., Colloids Surf. A, 431, 87 (2013). https://doi.org/10.1016/j.colsurfa.2013.04.032

Cited by

  1. ) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole: central composite design optimization vol.41, pp.17, 2017, https://doi.org/10.1039/C7NJ01450C
  2. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05755-6
  3. Graphene oxide edge grafting of polyaniline nanocomposite: an efficient adsorbent for methylene blue and methyl orange pp.1996-9732, 2018, https://doi.org/10.2166/wst.2018.250
  4. Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2'-dipyridylamine: Central composite de vol.32, pp.None, 2014, https://doi.org/10.1016/j.ultsonch.2016.03.020
  5. Carbon Based Polymeric Nanocomposites for Dye Adsorption: Synthesis, Characterization, and Application vol.13, pp.3, 2014, https://doi.org/10.3390/polym13030419