DOI QR코드

DOI QR Code

SVM 회귀 모형을 활용한 격자 강우량 상세화 기법

Spatial Downscaling of Grid Precipitation Using Support Vector Machine Regression

  • 문희원 (성균관대학교 건설환경시스템공학과) ;
  • 백종진 (성균관대학교 건설환경시스템공학과) ;
  • 황석환 (한국건설기술연구원 수자원연구실) ;
  • 최민하 (성균관대학교 수자원대학원 수자원학과)
  • Moon, Heewon (Dept. of Civil, Architectural and Environmental System Engineering, Sungkyunkwan Univ.) ;
  • Baik, Jongjin (Dept. of Civil, Architectural and Environmental System Engineering, Sungkyunkwan Univ.) ;
  • Hwang, Sukhwan (Water Resources Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Minha (Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan Univ.)
  • 투고 : 2014.09.05
  • 심사 : 2014.11.03
  • 발행 : 2014.11.30

초록

본 연구에서는 Tropical Rainfall Measuring Mission (TRMM) 3B43 V7 (25 km)의 월 누적 격자 강우량을 1 km 해상도로 상세화하기 위해 Support Vector Machine (SVM) 회귀를 활용한 상세화 기법을 제안하였다. 비선형 예측모델인 SVM은 상세화의 기반이 되는 다양한 수문기상인자와 강우 발생간의 월별 상관성 구축에 효율적으로 활용되었다. 상세화된 격자 강우는 전국에 고루 분포한 64개 지점 관측 강우와의 비교 분석을 통해 상세화 이전의 격자 강우 보다 다소 개선된 정확도를 지니는 것으로 확인되었다. 특히, 상세화 이전 격자 강우가 지니는 양의 Bias가 효과적으로 개선되었다. 상세화 전후의 공간분포 비교에서 두 분포는 평균적으로 유사했으나, 상세화 이전 강우의 공간분포에서 나타나지 않았던 강우의 국지적 특성이 상세화된 공간분포를 통해 잘 표현되는 것을 확인할 수 있었다. 특히, 일부 지점의 과소 및 과대산정이 상세화를 통해 개선되어 전반적인 정확도 향상에 기여하였음을 확인했다. 본 연구에서 제안된 상세화 기법이 적용된 격자 강우는 모델의 정확도 향상을 위한 고해상도 입력자료로 활용될 수 있으며, 추후 연구에서는 SVM 외에 다른 회귀 방식을 활용하여 최적의 강우 상세화 기법 개발에 기여할 수 있을 것으로 보인다.

A spatial downscaling method using the Support Vector Machine (SVM) Regression for 25 km Tropical Rainfall Measuring Mission (TRMM) Monthly precipitation is proposed. The nonlinear relationship among hydrometeorological variables and precipitation was effectively depicted by the SVM for predicting downscaled grid precipitation. The accuracy of spatially downscaled precipitation was estimated by comparing with rain gauge data from sixty-four stations and found to be improved than the original TRMM data in overall. Especially the positive bias of the original TRMM data was effectively removed after the downscaling procedure. The spatial distributions of 25 km and 1 km grid precipitation were generally similar, while the local spatial trend was better detected by 1 km grid precipitation. The downscaled grid data derived from the proposed method can be applied in hydrological modelling for higher accuracy and further be studied for developing optimized downscaling method incorporation other regression methods.

키워드

참고문헌

  1. Anandhi, A., Srinivas, V.V., Nanjundiah, R.S., and Kumar, D.N. (2008). "Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine." International Journal of Climatology, Vol. 28, pp. 401-420. https://doi.org/10.1002/joc.1529
  2. Baek, J.J., and Choi, M.H. (2012). "Availability of Land Surface Temperature from the COMS in the Korea Peninsula." Journal of KoreanWater Resources Association, Vol. 45, No. 8, pp. 755-765. https://doi.org/10.3741/JKWRA.2012.45.8.755
  3. Bardossy, A. (1997). "Downscaling from GCMs to local climate through stochastic linkages." Journal of Environmental Management, Vol. 49, No. 1, pp. 7-17. https://doi.org/10.1006/jema.1996.0112
  4. Barnes, W.L., Pagano, T.S., and Salomonson, V.V. (1998) "Prelaunch Characteristics of the Morderate Resolution Imageing Spectroradiometer (MODIS) on EOSAM1." IEEE Transaction on Geoscience and Remote Sensing, Vol. 36, No. 4, pp. 1088-1100. https://doi.org/10.1109/36.700993
  5. Beckmann, B., and Buishand, A. (2002) "Statistical downscaling relationships for precipitation in the Netherlands and north Germany." International Journal of Climatology, Vol. 22, pp. 15-32. https://doi.org/10.1002/joc.718
  6. Ben-David, S., and Lindenbaum, M. (1997). "Learning distributions by their density levels: a paradigm for learning without a teacher." Journal of Computer and System Science, pp. 171-182.
  7. Cavazos, T. (1999) "Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas." Journal of Climate, Vol. 12, pp. 1506-1523. https://doi.org/10.1175/1520-0442(1999)012<1506:LSCACT>2.0.CO;2
  8. Chang C.-C., and Lin, C.-J. (2011). "LIBSVM: a library for support vector machines." ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, pp. 1-27.
  9. Charles, S.P., Bates, B.C., Whetton, P.H., and Hughes J.P. (1999) "Validation of downscaling models for changed climate conditions: case study for southwestern Australia." Climate Research, Vol. 12, pp. 1-14. https://doi.org/10.3354/cr012001
  10. Chen, S.-T., Yu, P.-S., and Tang Y.-H. (2010). "Statistical downscaling of daily precipitation using support vector machines and multivariate analysis." Journal of Hydrology, Vol. 385, pp. 13-22. https://doi.org/10.1016/j.jhydrol.2010.01.021
  11. Cho, K. (2013). Flood runoff simulation using MIKE SHE and SVM in the Chungju Dam Basin. Mater's Thesis, Kyounghee University, Seoul, Korea.
  12. Chu, J.-L., Kang, H., Tam, C.-Y., Park, C.-K., and Chen, C.-T. (2008). "Seasonal forecast for local precipitation over northern Taiwan using statistical downscaling." Journal of Geophysical Research, Vol. 113, D12118, doi:10.1029/2007JD009424.
  13. Creutin, J.D., Delrieu, G., and Lebel, T. (1988). "Rain measurement by raingage-radar combination: a geostatistical approach." Journal of Atmospheric and Oceanic Technology, Vol. 5, pp. 102-115. https://doi.org/10.1175/1520-0426(1988)005<0102:RMBRRC>2.0.CO;2
  14. Duan, Z., Bastiaanssen, W.G.M., and Liu, J. (2012) "Monthly and annual validation of TRMM Mulitisatellite Precipitation Analysis (TMPA) products in the Caspian Sea Region for the period 1999-2003." Geoscience and Remote Sensing Symposium(IGARSS), 2012 IEEE International, Munich, Germany, pp. 3696-3699.
  15. Foody, G.M. (2004). "A relative evaluation of multiclass image classification by Support Vector Machines." IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 6, pp. 1335-1343. https://doi.org/10.1109/TGRS.2004.827257
  16. Gunn, S. (1998). Support Vector Machines for classification and regression. Image Speech and intell. Syst. Group, Dept. Elect. Comput. Sci., Univ. Southampton, Southampton, U.K., Tech. Rep.
  17. Huffman, G.J., Adler, R.F., Bolvin, D.T.Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Stocker, E.F., and Wolff, D.B. (2007). "The TRMM Multisatellite Precipitation Analysis (TMPA): Qasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scale." Journal of Hydrmeteororlogy, Vol. 8, No. 1, pp. 38-55. https://doi.org/10.1175/JHM560.1
  18. Hwang, S.H., Kim, J.H., and Jung, S.W. (2007). Hydrologic time series forecasting using SVM. Korea Water Resources Association Annual Conference, 2007, Pyeongchang, Korea, pp. 1972-1976.
  19. Immerzeel, W.W., Rutten, M.M., and Droogers, P. (2009) "Spatial Downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula." Remote Sensing of Environment, Vol. 113, pp. 362-370. https://doi.org/10.1016/j.rse.2008.10.004
  20. Jia, Sh., Zhu, W., Ju, A., and Yan T. (2011) "A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in Qaidam Basin of China." Remote Sensing of Environment, Vol. 114, pp. 3069-3079.
  21. Keramitsoglou, I., Kiranoudis, C.T., and Weng, Q. (2013). "Downscaling geostationary land surface temperature imagery for urban analysis." IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 5, pp. 1253-1257. https://doi.org/10.1109/LGRS.2013.2257668
  22. Kwon, H.H., Kim, M.J., and Kim, O.G. (2012) "A development of water demand forecasting model based on wavelet transform and support vetor machine." Journal of Korean Water Resources Association, Vol. 45, No. 11, pp. 1187-1199. https://doi.org/10.3741/JKWRA.2012.45.11.1187
  23. Olsson, J., Uvo, C.B., and Jinno, K. (2001) "Statistical atmospheric downscaling of shortterm extreme rainfall by neural networks." Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, Vol. 26, No. 9, pp. 695-700. https://doi.org/10.1016/S1464-1909(01)00071-5
  24. Osuna, E., Freund, R., and Girosi, F. (1997). An improved training algorithm for Support Vector Machines. IEEE NNSP 1997, Amelia Island, FL, pp. 276-285.
  25. Park, N.W. (2013). "Spatial Downscaling of TRMM Precipitation Using Geostatistics and Fine Scale Environmental Variables." Advances in Meteorology, Vol. 2013, Article ID 237126, 9 pages, doi:10.1155/2013/237126.
  26. Smola, A.J., and Scholkopf, B. (2004). "A tutorial on support vector regression." Statistics and Computing, Vol. 14, pp. 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
  27. Su, Fe., Hong, Y., and Lettenmaier, D.P. (2008). "Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin." Journal of Hydrometeorology, Vol. 9, pp. 622-640. https://doi.org/10.1175/2007JHM944.1
  28. Vapnik, V.N. (1982). Estimation of Dependences Based on Empirical Data: Springer Series in Statistics (Springer Series in Statistics), Springer-Verlag New York, Inc., Secaucus, NJ, U.S.A.
  29. Vapnik, V.N. (1995). The nature of statistical learning theory. Wiley, NY, U.S.A.
  30. Vapnik, V.N., and Chervonenkis, A.Y. (1971). "On the uniform convergence of relative frequencies of events to their probabilities." Theory of probability and its applications, Vol. 16, No. 2, pp. 264-281. https://doi.org/10.1137/1116025
  31. Wang, X. (2012). "Study on Genetic Algorithm Optimization for Support Vector Machine in Network Intrusion Detection." Advances in Information Sciences and Service Sciences, Vol. 4, No. 2, pp. 282-288.
  32. Willmott, C.J. (1981). "On the validation of models." Physical Geography, Vol. 2, pp. 184-194.
  33. Yin, Z.Y., Zhang, X., Liu, X., Colella, M., and Chen, X. (2008). "An Assessment of the biases of satellite rainfall estimates over the Tibetan Plateau and correction methods based on topographic analysis." Journal of Hydrometeorology, Vol. 9, pp. 301-326. https://doi.org/10.1175/2007JHM903.1

피인용 문헌

  1. Generating high resolution of daily mean temperature using statistical models vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1215