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Abstract

A new method to calculate the transmittable prevalence of an epidemic disease is proposed based on a back-
calculation formula. We calculated the probabilities of reactivation and of parasitemia as well as transmittable
prevalence (the number of persons with parasitemia in the incubation period) of malaria in South Korea using
incidence of 12 years(2001-2012). For this computation, a new probability function of transmittable condition is
obtained. The probability of reactivation is estimated by the least squares method for the back-calculated long-
term incubation period. The probability of parasitemia is calculated by a convolution of the survival function of
the short-term incubation function and the probability of reactivation. Transmittable prevalence is computed by
a convolution of the infected numbers and the probabilities of transmission. Confidence intervals are calculated
using the parametric bootstrap method. The method proposed is applicable to other epidemic diseases in other
countries where incidence and a long incubation period are available.

We found the estimated transmittable prevalence in South Korea was concentrated in the summer with 276
cases on a peak at the 31% week and with about a 60% reduction in the peak from the naive prevalence. The
statistics of transmittable prevalence can be used for malaria prevention programs and to select blood transfusion
donors.

Keywords: Epidemiologic methods, incubation period, malaria, least squares method, para-
sitemia, survival function, transmission.

1. Introduction

Malaria remains a problematic disease of the 21st century (WHO, 2005). It kills more than one
million people each year in the world. Global climatic change will allow malaria to spread into
northern latitudes such as Europe and large parts of the United States (Rogers and Randolph, 2000).
It is caused by a protozoan parasite in the phylum, Apicomplexa, and in the genus, Plasmodium.
There are four species that are in the genus: Plasmodium falciparum, Plasmodium vivax, Plasmodium
ovale, and Plasmodium malariae (Greenwood and Mutabingwa, 2002). Two species of these, P. vivax
and P. ovale, tend to have a hypnozoites stage and long incubation period (CDC, 2006).

P. vivax in South Korea was highly endemic until 1910 and decreased gradually after the appli-
cation of modern medicine. It was thought to be eradicated after 1984. But malaria reemerged in
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the demilitarized zone between North and South Korea, after 1993 because of the shortage of malaria
eradication programs in North Korea (Park et al., 2005; Lee et al., 2002). Around 2,000 people are
infected annually (KCDC, 2007).

We assume that if some diseases with a seasonal fluctuation have a long incubation period, their
infection curve would be different from the incidence curve. Malaria in South Korea satisfies those two
requirements. P. vivax (the only species in Korea) has a long incubation period and clear seasonality
that reflects the population dynamics and other entolological characteristics of the Anopheles sinensis
vector that hibernates during the winter season (Burket et al., 2002; Ree et al., 2001).

In this study, we computed the probabilities of reactivation and parasitemia, and the transmittable
prevalence (the number of persons with parasitemia in the incubation period). For this computation,
a new method based on the back-calculation formula is proposed. The probability of reactivation is
estimated by the least squares method for the back-calculated long-term incubation period. The prob-
ability of parasitemia is calculated by convolution of the survival function of the short-term incubation
function and the probability of reactivation. Transmittable prevalence is computed by a convolution of
the infected numbers and the probability of transmission. Details of these computations are provided
in Sections 3 and 4.

The back-calculation method, a major technique described in this paper, has been used to calculate
annual HIV infections from the annual incidence, their incubation distribution and other information
(Brookmeyer and Gail, 1988; Bacchetti er al., 1993; Hall ef al., 2008; Punyacharoesin and Viwat-
wongkasem, 2009). The method has also been used to estimate the number of dependent heroin
users in Australia (Law et al., 2001) and long-term trends in the incidence and prevalence of opiate
use/injecting drug use in England for 1968-2000 (De Angelis et al., 2004). It was used to estimate
the number of SARS cases imported by international air travel (Goubar et al., 2009), and age specific
cancer incidence rates (Mezzetti and Robertson, 1999). In this study, details to estimate infection dis-
tribution using back-calculation formula are described in the Appendix because the formula is already
known.

2. Back-calculation and Prevalence of Malaria
2.1. Data

All medical facilities in South Korea should report their malaria cases to public health centers and
then to the Korean Center for Disease Control(KCDC). We used their reporting data from 2001 to
2012 for our incidence data (KCDC, 2008) because the KCDC service tracked daily incidence days
after mid 2000. Figure 1 shows the time series of reported cases for 12 years. We used only domestic
malaria infection and excluded all overseas infection. A total of 17,280 cases were reported entirely
for 12 years. As we counted all cases on a weekly interval, the first week included 8 days since there
was no incidence on January 1%,

The out-break data for each year was smoothed to eliminate weekend and holiday effects. We
used Friedman’s SuperSmoother (“supsmu” function in R program (R-CRAN, 2014)), a symmetric
k-nearest neighbor linear least squares fitting procedure, with varying bandwidth selected by local
cross validation (Friedman, 1984).

2.2. The probability density function of the incubation period

Different incubation periods by region have been reported (Contacos et al., 1972; Garnham et al.,
1975; Adak et al., 1998). P. vivax from temperate countries tend to have a longer incubation time than
from tropical countries; however, some tropical malaria have long incubation period (Mangoni et al.,
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Figure 1: Reported cases of malaria per week in Korea between 2001 and 2012. Note the characteristic cyclicity
and slightly decreasing tendency.

2003).

The incubation period of Plasmodium vivax in South Korea was investigated by Nishiura ef al.
(2007). They concluded that the incubation period of P. vivax in South Korea, consisted of short and
long incubation periods. A total of 142 cases(63.1%) out of 225 with short incubation periods were
fitted with a gamma distribution, I'(1.2, 22.2), and 83 cases(36.9%) with long incubation periods were
fitted with a normal distribution, N(337.4, 40.6%).

Suppose a random variable T denotes the day which an infected man actually starts his clinical
course (with the infection at day 0). So T is same as the incubation period. Then the probability
density function(pdf) of T is represented by a mixture of two distributions;

Jr(d) ~ 0.631(1.2,22.2) + 0.37N (337.4,40.6%). @2.1)

Figure 2 shows the probability density function of the incubation period estimated by Nishiura et al.
(2007).

The long incubation period P. vivax infection is due to the hypnozoites stage. In the hypnozoites
stage, the sporozoites is discharged from the salivary glands of the hibernating mosquito in the hepatic
cell without multiplication (Cogswell, 1992).

2.3. Prevalence of malaria

To calculate the prevalence of malaria at week w of year y, we need to consider it through three years
because the incubation period lasts up to 104 weeks(two years). We will derive prevalence for each
years, and add up for three years. Denote P, is the prevalence at week w of year y, forw = 1,...,52,
G’ is the estimated numbers of infection at week 7 of year y, and S, is the survival function of the
incubation period T at week ¢.
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Figure 2: The probability density function of incubation period of P. vivax in South Korea estimated by Nishiura
et al. (2007).

Note that the survival function is
t
S,=Pr(T>t)=l—FT(t)zl—wa,
w=1

where Fr(f) is the cumulative distribution function of the incubation period 7', and f,, is the incubation
probability for each week w. Here f;, is computed by adding the probabilities given in (2.1) for seven
days in the week w. S, means the probability that an infected man is still in the incubation period after
the time ¢.

The prevalence P), who have infected between the week w of year y—2 and the last (52™) week of
year y — 2 is obtained by the equation, Y32, G;"fzS 104—(—w)- The prevalence P}, who have infected at
year y—1 is obtained by the equation, 3’32, G)™'S 5,,,_,. The prevalence P}, who have infected between
the first week of year y and the current week of year y is obtained by the equation, Z;V:_ll GS .

Since we assume that G)> = G!™' = G} = G,, we obtain the prevalence at week w of year y by
adding the above three equations with G, as:

w—1

52 52
Py=) GiS10aom + D GiSs2enst + ). GiS sy 2.2)
=w t=1 t=1

forw=1,...,52.

The computed prevalence are drawn (solid line of the upper part) in Figure 4. Here G, is obtained
by using the back-calculation formula and maximum likelihood estimation method. The details of
calculating G; are described in the Appendix. Table 1 indicates the values of G, estimated from data
of South Korea. The similar approach is also provided in Lee et al. (2014).



Estimating Transmittable Prevalence 491

Table 1: Results obtained by the proposed method utilizing back-calculations for 52 weeks: The estimated
weekly number of infections and the prevalence with 95% confidence interval in parenthesis.

Estimated Prevalence Estimated Prevalence
‘Week . . . . Week . X .
infection numbers of malaria infection numbers of malaria
1 0 534 (503, 560) 27 108 516 (467, 542)
2 0 533 (503, 559) 28 113 553 (501, 582)
3 0 533 (502, 559) 29 115 590 (535, 621)
4 0 532 (502, 558) 30 111 625 (570, 657)
5 0 531 (501, 557) 31 104 655 (597, 686)
6 0 531 (500, 556) 32 96 677 (622, 710)
7 0 530 (499, 554) 33 85 693 (638, 726)
8 0 528 (498, 553) 34 71 701 (646, 733)
9 0 526 (496, 551) 35 56 701 (648, 732)
10 0 523 (493, 549) 36 45 692 (642, 726)
11 0 520 (490, 545) 37 35 680 (630, 712)
12 0 515 (486, 540) 38 27 665 (618, 697)
13 0 509 (481, 533) 39 22 649 (605, 679)
14 0 501 (472, 525) 40 18 634 (592, 664)
15 0 492 (463, 515) 41 12 622 (581, 651)
16 0 480 (450, 502) 42 0 609 (570, 637)
17 0 467 (436, 489) 43 0 589 (553, 616)
18 0 451 (419, 472) 44 0 574 (539, 601)
19 4 432 (400, 454) 45 0 563 (529, 590)
20 20 415 (382, 437) 46 0 555 (522, 581)
21 30 410 (376, 433) 47 0 549 (516, 575)
22 43 410 (373, 433) 48 0 544 (512, 570)
23 56 416 (378, 440) 49 0 541 (510, 567)
24 71 429 (388, 454) 50 0 538 (507, 564)
25 87 450 (405, 475) 51 0 537 (505, 563)
26 100 480 (434, 508) 52 0 535 (504, 561)

The 95% confidence intervals for the prevalence were calculated by using the parametric bootstrap
method. By noting that there are two components(G,, and Sy) in (2.2), we considered the variations
due to G,, and S;. The reason why we deal with the variation due to Sy is that the pdf (2.1) of the
incubation period is an estimated function and there is uncertainty. The algorithm to compute the
confidence intervals using the bootstrap method is given as follows. Firstly, for G,,, we assumed that
G,, follows a Poisson distribution with mean 5W, the estimated infection numbers for the week w as
obtained in the Appendix. So a Poisson random variate with mean G, is generated for each week w,
where w = 1,2,...,52. Secondly, for S, 730 random numbers from the pdf (2.1) of the incubation
period are generated. Then the empirical survival function (Se) is constructed from 730 random
numbers, by adding those of the corresponding seven days for the week k, where k = 1,2,...,114.
Using the generated G,, and the computed §k, we can calculate the prevalence by (2.2). This consists
one series of the prevalence for a year. We repeat this procedure B times to get the B series of the
prevalence. Then, the 100 X (1 — @)% confidence interval of the prevalence at a week w is obtained as:

(Peas): Poi-p)) 23)

where P(gg) is the B X (@/2)-th ascending order statistic among the B bootstrap samples of the preva-
lence at a fixed week w. This confidence interval construction for a fixed week w is gone through for
every week w, forw = 1,2,...,52. Here, we used B = 1000 and @ = 0.05 for actual computation.
Figure 4 shows the estimated confidence intervals (dotted lines of the upper part).
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3. Probabilities of Reactivation and Parasitemia

In the hypnozoites state, malaria hibernates in hepatic cells and is not present in the bloodstream
before reactivation. Thus, we calculate the transmittable prevalence that is the number of transmittable
persons with parasitemia in the incubation period.

3.1. Reactivation distribution

To compute the transmittable prevalence(TP), we need to know the probability density of parasitemia.
Infections with long incubation periods actually start their clinical course after reactivation. It is
almost impossible for every infection with a long incubation period to reactivate on the same day.
Therefore, it is reasonable to think that the normal distribution of a long incubation period is con-
tributed to by the distribution of the reactivation time. We assume that the reactivation time distribu-
tion follows a normal distribution and the probability of the incubation time after reactivation is the
same as the probability of a short-term incubation. The latter assumption means that the incubation
time for each reactivation at the long-incubation period follows the Gamma (1.2, 22.2) distribution,
which is the probability of a short-term incubation. So we can infer that the probability of a long-term
incubation is actually the convolution of a reactivation and a short-term incubation. This convolution
is represented by the following Equation (3.1).

Since transmission is possible after reactivation, we need to know a distribution of reactivation
time first and we assume that reactivation time follows a normal N (uy, 0'%) distribution. This normality
assumption is reasonable because the long-term incubation period follows a normal distribution. Here,
the parameters py, 0 are unknown and to be estimated. It is estimated by using the probability density
function of the incubation period, the back-calculation formula and the least squares method. Instead
of assuming that N, follows a normal distribution, one can take a distribution-free way. It is discussed
in the Section 5.

Denote N; as the probability of reactivation at day d in the incubation. Let L; be the probability
at day d which follows the normal N(337.4, 40.6%) distribution. Let p, be the probability at day
d which follows the Gamma (1.2, 22.2) distribution. Here L; and p, are the probabilities of day d
long-term and short-term incubation, respectively, which distributions are came from Nishiura ez al.
(2007) as given in (2.1). Then one estimation of L;, denoting by L, is calculated using the following
back-calculation formula:

320

Li= ) Naxpio (3.1)
k=1

for d = 337 — 4 x40,...,337 + 4 x 40, and N, = O for d < k. Here, the range of d is chosen as
[u—40, u+40], where this interval covers 99.9% of non-zero probabilities of N(u, o) distribution.
Now, parameters u and o are estimated by minimizing the following sum of squared differences:

497

Quo.o3)= Y (La~Ta) - (3.2)

d=177

This optimization was performed numerically by using a routine (“optim”) in R program (R-CRAN,
2014). This routine utilizes the quasi-Newton algorithm. A finite-difference approximation was used
for the gradient of the objective function. We set several initial values for (ug, o), and treated the
best local minimizer as the global minimizer.
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Table 2: Calculated values of the probability of transmission at day d, obtained by the Equation (3.4). The notes
in parenthesis, that is, ‘start’ and ‘peak’ denotes the starting time and the peak time of the probability of
transmission which is obtained based on only the long-term incubation period.

Day 1 5 10 15 20 25 30 35
Probability 0.6175 0.5462 0.4576 0.3791 0.3119 0.2556 0.2087 0.1700
Day 40 45 50 55 60 80 100 120
Probability 0.1382 0.1122 0.0909 0.0736 0.0596 0.0253 0.0107 0.0045
Day 150 180 210 240(start) 250 260 270 280
Probability 0.0012 0.0003 0.0004 0.0041 0.0079 0.0140 0.0231 0.0352
Day 290 300 310 320 333(peak) 350 360 370
Probability 0.0498 0.0653 0.0796 0.0903 0.0960 0.0879 0.0769 0.0637
Day 380 390 400 410 420 430 440 450
Probability 0.0501 0.0377 0.0273 0.0192 0.0131 0.0088 0.0058 0.0038
Day 460 500

Probability 0.0025 0.0000

The actual estimated values of parameters in a normally distributed reactivation time are fip =
313.465, and & = 34.503. From these values, we know that the reactivation starts 24 days earlier, on
average, than the mean of the long-term incubation period. The standard deviation of the reactivation
distribution is about 85% smaller than the long-term incubation period.

3.2. The probability of transmission

As the survival function was used importantly in calculating the prevalence of malaria in subsection
2.3, we would like to derive the survival function of the incubation period under the transmittable
condition (with parasitemia) to compute the TP. Let #, be the possible start day of the reactivation for
a patient with a long term incubation period. Actually we set fy = 337 — 5 x 40 = 137. Let T! denotes
the long-term incubation period under transmittable condition. Then the probability of transmission
at day d for the long-term incubation period (d > fy) is

d—ty

Pr (7! > d) = Z NyiS0,  ford > 1, (3.3)
k=0

where Sg is the survival function of the day k with the short term incubation period, and N is the
probability of the reactivation at day d which follows a normal distribution with mean 314.465 and
standard deviation 34.503 as obtained in the above subsection.

Now the probability of transmission at the day d is defined as a mixture of two probability func-
tions of the short-term and of long-term incubation periods;

$h=0.631x85+0.369xPr(T' > d). (3.4)

This is used to compute the TP. Note that malaria is always transmittable during the short-term incu-
bation period. Thus the short-term survival function (S 2) is used without modification.

Figure 3 shows this function. The maximum value 0.096 for the long-term incubation period
occurs at the 333™ day. Table 2 provides the selected numerical values of this function.
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Figure 3: A mixture of the probability functions of short-term and long-term incubation periods with parasitemia,
obtained by the Equation (3.4). The maximum probability 0.096 for the long-term incubation period occurs at
the 333 day.

4. Transmittable Prevalence

As an analogy from the Equation (2.2), we compute the transmittable prevalence(TP) using the fol-
lowing convolution;

52 52 w—1
P, = Z GiS Yoa- oy * Z GiS Sy * Z GiSy s “.1)
k=w k=1 k=1
forw = 1,...,52, where P!, is the TP at week w, Gy is the infected numbers at week k, and S ,’Z

is the probability of transmission at week k computed from Equation (3.4). Here, S f for week k is
calculated by adding the corresponding daily values for seven days. This calculation is done over two
years because some SZ are non-zero over 104 weeks. Figure 4 shows the result of the TP (solid line
of the lower part) and its 95% confidence intervals (dotted lines of the lower part) obtained from data
of South Korea. Table 3 provides the numbers corresponding to this figure.

The 95% confidence intervals for the TP were calculated using the parametric bootstrap method.
By noting that there are two components (G, and S%) in (4.1), we considered the variations due to
Gy and S?. The below is the algorithm to compute the - confidence intervals using bootstrap method.
Firstly, for G, a Poisson random variate with mean Gy is generated for each week k, where k =
1,2,...,52, as we did in the Subsection 2.3. Secondly, for S, a normal variate with mean p,, and
variance p,(l — p,,) is generated for each week w, where w = 1,2,...,104. This computation is
repeated for every k and w. Then, using generated G, and S%’s for every week k and w, we can
calculate the TP by (4.1). This constructs one series of the TP for a year. We repeat this procedure B
times to get the B series of the TP. Then, the 100 X (1 — @)% confidence interval of the TP at a week
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Figure 4: Distributions of prevalence (solid line of the upper part) and the transmittable prevalence (solid line of
the lower part) of malaria in Korea. 95% confidence intervals are drawn by dotted lines for each prevalence. The
maximum (276 cases) of the transmittable prevalence occurs at the 31st week.

k is obtained as;
(TP(ag) TPu-3))- (4.2

where TPz¢) is the B X (a/2)-th ascending order statistic among the B bootstrap samples of the TP
at a fixed week k. This confidence interval construction for a fixed week k is gone through for every
week k, fork = 1,2,...,52. Here, we used B = 1000 and a = 0.05 for actual computation.

From Figure 4, we can see the TP is distributed similarly as a normal distribution, with a shape that
looks like the smoothed incidence distribution. The maximum (276 cases) occurs at the 31% week.
The cases in incubation with parasitemia are less than the naive prevalence (solid line of the upper
part). The TP is about 60% reduction at the peak from the naive prevalence. The width of confidence
intervals of the TP is proportional to the height of the TP. The largest width of confidence interval at
the peak of the TP is 206. It is possible to induce the maximum standard error of the TP be about 52,
assuming the normal distribution.

It is notable that the TP between the 50" week and the 14" week is very small. Thus, we may
consider easing the restriction on malaria for blood donations during this period.
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Table 3: Results obtained by the proposed method utilizing back-calculations for 52 weeks: The estimated
weekly number of the transmittable prevalence and 95% confidence interval in parenthesis.

Week Transmittable prevalence Week Transmittable prevalence
1 324 27 224 (153,313)
2 2(1,3) 28 245 (164,347)
3 2(1,3) 29 261 (174,369)
4 2(1,2) 30 272 (182,384)
5 2(1,3) 31 276 (186,392)
6 2(1,3) 32 274 (182,388)
7 324 33 266 (179,380)
8 4(2,6) 34 252 (171,358)
9 53,9 35 233 (157,329)
10 8(5,13) 36 209 (147,297)
11 11 (6,17) 37 184 (131,262)
12 14 (9,23) 38 159 (114,226)
13 19 (12,30) 39 136 (96,189)
14 24 (15,39) 40 114 (84,160)
15 30 (19,48) 41 96 (69,134)
16 37 (23,58) 42 79 (56,111)
17 45 (28,71) 43 59 (42,84)
18 53(33,82) 44 45 (32,65)
19 61 (38,93) 45 33(24,49)

20 70 (44,104) 46 25 (17,37)
21 87 (58,127) 47 18 (13,27)
22 106 (72,151) 48 14 (9,20)
23 127 (87,180) 49 10 (7,15)
24 150 (103,213) 50 7(5,11)
25 174 (122,244) 51 54.8)
26 199 (140,280) 52 4(3,6)

5. Discussion

We analyzed the incidence data on a weekly basis even though the original source from the KCDC
was on a daily basis. The weekly data was then smoothed to eliminate weekend and holiday effects.
The first time in our study, we tried to calculate the daily infection rate using the daily incidence
data, but it was very difficult because there were too many regression coefficients (n = 365). The
variation of the daily infection rate was too big to accept when we calculated the rate using the matrix
inversion method. We also did not use 2 weeks of interval data because the loss of information was
considerable.

Transmittable prevalence, the number of transmittable people with parasitemia if the disease can
be transmitted directly, is concentrated in the summer with a peak at the 31 week. In malaria sit-
uations, it is possible for people with malaria to donate blood to people needing blood transfusions
(Kitchen and Chiodini, 2006; Mary et al., 2001). In South Korea, any visitor to a malarial endemic
area is not permitted to donate blood for 1 year. We may consider easing the restriction based on
estimated infection rates and transmittable prevalence.

We developed a new statistical methodology tp estimate the transmittable prevalence associated
with short- and long-term incubation periods. We defined a new probability function of incubation
period with parasitemia. We obtained probabilities of reactivation and of parasitemia by repeatedly
using the back-calculation formula. Reviewers recommended a performance evaluation of our estima-
tion method for the transmittable prevalence and of bootstrap approach for constructing confidence
intervals. They also suggested a simulation study; however, it is hard and left as a topic for future
study.
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A normal distribution is assumed for the reactivation time distribution when estimating transmit-
table prevalence. This parametric assumption can be removed. We may estimate the distribution
directly by the least squares method without assuming a parametric distribution, where the reactiva-
tion probabilities are treated as regression coefficients; consequently, some statistical considerations
and numerical techniques may be required.

We calculated the confidence intervals for the prevalence by using a parametric bootstrap in Sub-
section 2.3. One can try a nonparametric bootstrap approach as the below. For this purpose, we treat a
time series of malaria incidences of each year as an observation, so that consisted of 13 observations.
We construct a bootstrap sample from these 13 time series by sampling with replacement. From this
bootstrap sample, we estimate G,, by minimizing the Equation (A.3), and denote it (A?(W'). This proce-
dure is repeated B times to construct é}l ), é\(f) for every w. Using 55?, we can calculate the B
series of prevalence by using (2.2). Then, the 100 X (1 — @)% confidence interval of the prevalence at a
week w is obtained by (4.2). This confidence interval construction for a fixed week w is gone through
for every week w, for w = 1,2,...,52. This nonparametric bootstrap approach might be more honest
to data than the parametric bootstrap (presented in the Subsection 2.3) that requires a numerical opti-
mization routine to estimate G,, by minimizing the Equation (A.3) for each bootstrap sample, which
is sometimes unsuccessful in reaching to the global minimizer. In addition, the computing time of
this approach is more than that of a parametric bootstrap. This discussion on the confidence intervals
for prevalence can be similarly applied to the transmittable prevalence after modification; in addition,
one can try a semi-parametric bootstrap method (Kim, 2011) which combines one part of parametric
bootstrap and the other part of nonparametric bootstrap.

We used the result of Nishiura et al. (2007) for the incubation period of P. vivax for what is
essential for the back-calculation of infection rates. Kim et al. (2013) obtained the similar results with
a shorter mean incubation period than Nishiura ef al. (2007). An estimate of transmittable prevalence
with the incubation periods of Kim ef al. (2013) will change the results. This possibility is partly
covered in the confidence interval computations in Sections 2.3 and 4 by considering the uncertainty
of the survival functions that originated from the estimated pdf of Nishiura ez al. (2007).

We think the malaria data of other countries can be analyzed in the same way as presented here if
they have information about incubation periods for own malaria and incidence surveillance data. For
example, it can be applicable to some tropical malaria with long incubation periods (Mangoni ef al.,
2003). This method can also be used for other infectious diseases.

6. Summary

We developed a new statistical methodology for estimating the transmittable prevalence associated
with short-term and long-term incubation periods. The method was applied to data in South Korea. We
computed the probabilities of reactivation and of parasitemia. Transmittable prevalence, the number
of transmittable persons with parasitemia if the disease can be transmitted directly, is concentrated in
summer with 276 a peak at the 31st week in South Korea. The transmittable prevalence is about 60%
reduction at the peak from the naive prevalence. Estimated transmittable prevalence may be useful in
modifying blood donation regulations related to malaria.

Appendix: Estimating infection distribution by the back-calculation

Assuming that the out-break observations follow a Poisson distribution, we can estimate the infection
distribution using the back-calculation formula and the maximum likelihood method.
From the back-calculation method (Brookmeyer and Gail, 1988; Bacchetti ez al., 1993; De Angelis
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et al., 2004), we have for y = 2001, ...,2012 and forw =1,...,52,

103
Ay, = Z S104-kGrsk + &, (A1)
=0

where f,, is the incubation probability computed for each week w, G,, is the infection numbers for the
week w, A, is a random variable representing the malaria cases at y year and w week, and the random
variable ¢ is the error term. The range of & (from O to 103) is set to cover two years. Thus, we actually
assume that A}, follows a Poisson distribution with a mean function

103
Ly = ) fosiGus. (A2)
k=0

Since we already know A’ and f,,, the unknown quantities G, are treated as regression co-
efficients and are subject to being estimated. Here, we assume that G,, = G50 = G104 for

w=1,...,52. f, is computed by adding the corresponding daily incubation probabilities for seven
days.
The log-likelihood function of G,, for given data A), is proportional to
2012 52
Z [Aiv 10g Aw — Aw] ’ (A3)
y=2001 w=1

where A, is the supersmoothed value from the observed malaria cases at y year and w week, and
A,, is the mean function of Equation (A.2). Since no explicit maximizers of Equation (A.3) exist, a
numerical optimization routine is needed to estimate G,, forw = 1,...,52. The estimator is denoted as
G,.. We use quasi-Newton algorithm (“optim” function) in R program (R-CRAN, 2014) to minimize
the negative value of the Equation (A.3). The estimated infection numbers are provided in Table 1.
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