DOI QR코드

DOI QR Code

Correlation of the Speed of Enhancement of Hepatic Hemangiomas with Intravoxel Incoherent Motion MR Imaging

간혈관종의 조영증강속도와 복셀내비결집운동 MR영상과의 상관관계

  • Yang, Dal Mo (Department of Radiology, Kyung Hee University Hospital at Gangdong) ;
  • Jahng, Geon-Ho (Department of Radiology, Kyung Hee University Hospital at Gangdong) ;
  • Kim, Hyun Cheol (Department of Radiology, Kyung Hee University Hospital at Gangdong) ;
  • Kim, Sang Won (Department of Radiology, Kyung Hee University Hospital at Gangdong) ;
  • Kim, Hyug-Gi (Department of Biomedical Engineering, Kyung Hee University)
  • 양달모 (강동경희대병원 영상의학과) ;
  • 장건호 (강동경희대병원 영상의학과) ;
  • 김현철 (강동경희대병원 영상의학과) ;
  • 김상원 (강동경희대병원 영상의학과) ;
  • 김혁기 (경희대학교 생체의공학과)
  • Received : 2014.06.14
  • Accepted : 2014.08.19
  • Published : 2014.09.30

Abstract

Purpose : To evaluate the relationship between the speed of enhancement of hepatic hemangiomas on gadolinium-enhanced MRI and ADC values by using various parameters, including the D, f, $D^*$ and $ADC_{fit}$ on intravoxel incoherent motion (IVIM) MR Imaging. Materials and Methods: The institutional review board approved this retrospective study. A total of 47 hepatic hemangiomas from 39 patients were included (20 men and 19 women). The hemangiomas were classified into three types according to the enhancement speed of the hepatic hemangiomas on gadolinium-enhanced dynamic T1-weighted images: rapid (Type A), intermediate (Type B), and slow (Type C) enhancement. The D, f, $D^*$ and $ADC_{fit}$ values were calculated using IVIM MR imaging. The diffusion/perfusion parameters and ADC values were compared among the three types of hemangiomas. Results: Both the $ADC_{fit}$ and D values of type C were significantly lower than those of type A (P = 0.0022, P = 0.0085). However, for the f and $D^*$, there were no significant differences among the three types. On DWI with all b values (50, 200, 500 and $800sec/mm^2$), the ADC values of type C were significantly lower than those of the type A (P < 0.012). For b values with $800sec/mm^2$, the $ADC_{800}$ values of the type C hemangiomas were significantly lower than those of type B (P = 0.0021). We found a negative correlation between hepatic hemangioma enhancement type and $ADC_{50}$ (${\rho}=-0.357$, P = 0.014), $ADC_{200}$ (${\rho}=-0.537$, P = 0.0001), $ADC_{500}$ (${\rho}=-0.614$, P = 0.0001), and $ADC_{800}$ (${\rho}=-0.607$, P = 0.0001). Therefore, four ADC values of $ADC_{50}$, $ADC_{200}$, $ADC_{500}$, and $ADC_{800}$ were decreased with decreasing enhancement speed. Conclusion: Hepatic hemangiomas had variable ADCs according to the type of enhancement, and the reduced ADCs in slowly enhancing hemangiomas may be related to the reduced pure molecular diffusion (D).

목적: 조영증강 MRI에서의 간혈관종의 조영증강속도와 겉보기확산계수 및 복셀내비결집운동 MR영상에서의 여러가지 지표인, 진성 확산계수 (D), 관류계수 (f), 가성 확산계수 ($D^*$), 겉보기확산계수 ($ADC_{fit}$)와의 상관관계를 알아보고자 하였다. 대상과 방법: 후향적인 연구로 IRB 승인을 받았다. 39명 환자에서 47개의 간혈관종을 연구대상으로 하였다. 이 중 남자가 20명 여자가 19명이었다. 간혈관종은 조영증강후 시행한 T1 강조영상에서의 조영증강 속도에 따라서 3가지 형으로 분류하였고, 빠른 조영증강을 보이는 간혈관종은 A형, 중간정도는 B형, 느린 조영증강을 보이는 경우는 C형으로 하였다. D, f, $D^*$ and $ADC_{fit}$ 값을 구하여 3가지형의 간혈관종 간에 차이를 비교하였다. 결과: $ADC_{fit}$와 D 값은 C형의 간혈관종이 A형의 간혈관종보다 유의하게 낮았다 (P = 0.0022, P = 0.0085). 하지만 f 와 $D^*$ 값은 세 군간에 차이가 없었다. 모든 b값에서의 (50, 200, 500 and $800sec/mm^2$) 겉보기확산계수값은 C형이 A형에 비해 유의하게 낮았다 (P < 0.012). 그리고 b값이 $800sec/mm^2$에서 C형의 겉보기확산계수 값이 B형보다 유의하게 낮았다 (P = 0.0021). 하지만 다른 b 값에서는 A형과 B형, B형과 C형 간의 차이는 없었다(P > 0.016). 간혈관종의 조영증강 속도와 각 b 값에서의 겉보기확산계수 값 $ADC_{50}$ (${\rho}=-0.357$, P = 0.014), $ADC_{200}$ (${\rho}=-0.537$, P = 0.0001), $ADC_{500}$ (${\rho}=-0.614$, P = 0.0001), $ADC_{800}$ (${\rho}=-0.607$, P = 0.0001)과는 부적 상관관계 (negative correlation)를 보였다. 따라서 $ADC_{50}$, $ADC_{200}$, $ADC_{500}$, and $ADC_{800}$에서의 겉보기확산계수 값은 조영증강속도가 느릴수록 감소하는 경향을 보였다. 결론: 간혈관종은 조영증강 속도에 따라 다양한 겉보기확산계수 값을 보이고, 느린 조영증강을 보이는 간혈관종이 감소된 겉보기확산계수 값을 보이는 것은 진성 분자확산과 관계가 있다.

Keywords

References

  1. Semelka RC, Sofka CM. Hepatic hemangiomas. Magn Reson Imaging Clin N Am 1997;5:241-253
  2. Ichikawa T, Haradome H, Hachiya J, Nitatori T, Araki T. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR Am J Roentgenol 1998;170:397-402 https://doi.org/10.2214/ajr.170.2.9456953
  3. Namimoto T, Yamashita Y, Sumi S, Tang Y, Takahashi M. Focal liver masses: characterization with diffusion-weighted echoplanar MR imaging. Radiology 1997;204:739-744 https://doi.org/10.1148/radiology.204.3.9280252
  4. Taouli B, Vilgrain V, Dumont E, Daire J, Fan B, Menu Y. Evaluation of liver diffusion isotrophy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 2003;226:71-78 https://doi.org/10.1148/radiol.2261011904
  5. Bruegel M, Holzapfel K, Gaa J, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 2008;18:477-485 https://doi.org/10.1007/s00330-007-0785-9
  6. Parikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterization with diffusion weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008;246:812-822 https://doi.org/10.1148/radiol.2463070432
  7. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010;254:47-66 https://doi.org/10.1148/radiol.09090021
  8. Goshima S, Kanematsu M, Kondo H, et al. Hepatic hemangioma: correlation of enhancement types with diffusionweighted MR findings and apparent diffusion coefficients. Eur J Radiol 2009;70:325-330 https://doi.org/10.1016/j.ejrad.2008.01.035
  9. Vossen JA, Buijs M, Liapi E, Eng J, Bluemke DA, Kamel IR. Receiver operating characteristic analysis of diffusion-weighted magnetic resonance imaging in differentiating hepatic hemangiomas from other hypervascular liver lesions. J Comput Assist Tomogr 2008;32:750-756 https://doi.org/10.1097/RCT.0b013e31816a6823
  10. Feuerlein S, Pauls S, Juchems MS, et al. Pitfalls in abdominal diffusion weighted imaging: how predictive is restricted water diffusion for malignancy. AJR Am J Roentgenol 2009;193:1070-1076 https://doi.org/10.2214/AJR.08.2093
  11. Nam SJ, Park KY, Yu JS, Chung JJ, Kim JH, Kim KW. Hepatic cavernous hemangiomas: relationship between speed of intratumoral enhancement during dynamic MRI and apparent diffusion coefficient on diffusion-weighted imaging. Korean J Radiol 2012;13:728-735 https://doi.org/10.3348/kjr.2012.13.6.728
  12. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999;210:617-623 https://doi.org/10.1148/radiology.210.3.r99fe17617
  13. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Jeantet ML. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505 https://doi.org/10.1148/radiology.168.2.3393671
  14. Le Bihan D, Turner R, MacFall JR. Effects of intravoxel incoherent motions (IVIM) in steady-state free precession (SSFP) imaging: application to molecular diffusion imaging. Magn Reson Med 1989;10:324-337 https://doi.org/10.1002/mrm.1910100305
  15. Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology 2008;249:891-899 https://doi.org/10.1148/radiol.2493080080
  16. Turner R, Le Bian D, Maier J, Vavrek R, Hedges LK, Pekar J. Echo-planar imaging of intravoxel incoherent motions. Radiology 1990;177:407-414 https://doi.org/10.1148/radiology.177.2.2217777
  17. Dixon WT. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging: a modest proposal with tremendous potential. Radiology 1988;168:566-567 https://doi.org/10.1148/radiology.168.2.3393682
  18. Yoon JH, Lee JM, Yu MH, Kiefer B, Han JK, Choi BI. Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. J Magn Reson Imaging 2014;39:276-285 https://doi.org/10.1002/jmri.24158
  19. Ichikawa S, Motosugi U, Ichikawa T, Sano K, Morisaka H, Araki T. Intravoxel incoherent motion imaging of focal hepatic lesions. J Magn Reson Imaging 2013;37:1371-1376 https://doi.org/10.1002/jmri.23930
  20. Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010;31:589-600 https://doi.org/10.1002/jmri.22081
  21. Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 2011;196:1351-1361 https://doi.org/10.2214/AJR.10.5515
  22. Woo S, Lee JM, Yoon JH, Joo I, Han JK, Choi BI. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: correlation with enhancement degree and histologic grade. Radiology 2014;270:758-767 https://doi.org/10.1148/radiol.13130444
  23. Yu JS, Kim MJ, Kim KW. Intratumoral blood flow in cavernous hemangioma of the liver: radiologic-pathologic correlation. Radiology 1998;208:549-550
  24. Yamashita Y, Ogata I, Urata J, Takahashi M. Cavernous hemangioma of the liver: pathologic correlation with dynamic CT findings. Radiology 1997;203:121-125 https://doi.org/10.1148/radiology.203.1.9122378