
58

Journal of Engineering Education Research
Vol. 17, No. 4, pp. 58~61, July 2014

A Web-based Tool for Teaching Computer Programming
Sehyeong Cho*,†

*Myongji University

ABSTRACT
This paper introduces a tool for effective teaching of introductory computer programming. In order for the class to be

effective, we try to attain attention, relevance, confidence, and satisfaction based on Keller’s ARCS model. A web-based tool is
developed to help both the students and the instructors.

Keywords: computer programming, engineering education

I. Introduction1)

Computer programming languages are extremely difficult

to learn, especially for students who have no background

or experience in computer programming. One big problem

is the lack of motivations. Motivations can be attained

from various sources, either outside the course or inside

the course. Keller's ARCS model[1] presents strategies

for designing a class for attaining maximal motivations,

based on attention, relevance, confidence, and satisfaction.

We built a web-based tool so that students are better

motived inside the course. Attention is of utmost importance,

since each lab builds on the previous one, where losing

attention for a few minutes may result in losing the

whole class hour. Relevance is important because what

they do should mean something to them; they can hardly

be interested otherwise. Confidence is also important,

since students need to make sure they are doing fine.

Satisfaction gives positive feedback, resulting in self-

propelled study activities.

We designed and implemented a web-based tool for

teaching and learning C/C++ language programming with

Keller’s ARCS criteria and strategies in mind.

II. Keller's ARCS Model

Keller suggested a so called “ARCS” model, for attention,

Received 30 June, 2014; Revised 30 June, 2014
Accepted 30 July, 2014
† Corresponding Author: shcho@mju.ac.kr

relevance, confidence, and satisfaction. ARCS model represents

a set of strategies for instruction design for promoting

maximal student motivation, and for sustaining it. Attention

is attained at least in two ways. One is by perceptual

arousal, and the other is by inquiry arousal. In order to

stimulate perceptual arousal, the students need be surprised

or get unexpected, interesting events. Inquiry arousal means

stimulating curiosity by way of challenging questions or

problems to be solved. In other words, we stimulate the

learner's curiosity and therefore their attitude toward new

problems and solutions.

Relevance is required to increase motivation by making

them think the topic of study is relevant, familiar, and

useful. By resorting to experience, learners can see how

the new learning will use their existing skills. We can also

try to make them think the subject matter has importance

for them today, or maybe tomorrow. Another strategy would

be to allow the learners to use different methods to pursue

their work or allowing choice in how they organize it.

Confidence is important, because the learners should

not be frustrated but succeed in some respect. The

learners should be presented a degree of challenge that

provides meaningful success. Strategies include 1) build

up small successes gradually based on previous ones, 2)

help the learners aware of precise performance requirements

and evaluation criteria, 3) provide feedback as reward to

internal attributions for success, and 4) make learners

feel some degree of control over their learning and

assessment, i.e., they should believe that their success is

A Web-based Tool for Teaching Computer Programming

Journal of Engineering Education Research, 17(4), 2014 59

a direct result of their effort they made

Satisfaction is based upon motivation, and comes by

having the feeling of achievement and accomplishment.

Therefore the learners should be provided with opportunities

to use newly acquired knowledge or skill in a certain way

and be satisfied. Appropriate feedback and reinforcements

will help sustain the desired behavior. If learners feel

good about their learning results, they will be motivated

to learn. However, it is dangerous to reward overly, because

too good compliments for bad performance may lead to

unexpectedly bad behavior. Satisfaction is also closely

related to confidence.

III. Strategies and Tools for attaining ARCS in

Learning Programming

1. Attention

In a programming course, it is extremely difficult to

maintain the learner’s attention for an hour, if only lecturing

is given throughout the class. One of the reasons, obviously,

is that learners are passively engaged in the class during

lecturing. More important reason, however, is that learning

a language is not simply absorbing independent pieces of

knowledge. Unlike knowledge-oriented subjects, each topic

in a programming course builds upon the previously learned

topic. Moreover, each step requires certain level of competence

in order for the next topic be meaningfully learned. This

is why we need reinforcement through actual laboratory

exercises. In the past, one hour of lecture is followed by

one hour of laboratory exercises plus homework assignment.

This resulted in extreme inefficiency and ineffectiveness

in both the lecturing and the laboratory. For this reason,

we divided the lecture into small chunks each of which is

followed by small exercises that will reinforce their

understanding. The difficulty lies in how to efficiently

mix lecturing and laboratory exercises, since too much

time is wasted in transitioning from lecture to lab and

back to lecture. In order to help this out, we designed a

tool for easily create a problem, do and monitor exercises,

automatically grade, and collect the result.

There are two types of web-based laboratory exercises.

The first type is a simple question answering. Fig. 1

shows the interface for the instructor used to create a

simple quiz. Usually they are multiple choice questions or

short-answer questions, where the answer is relatively

obvious. However, if wrong answer is selected, then the

student gets a penalty. All that is required to correctly

answer such a question is simply to pay attention.

The second type is fill-in-the-blank programming. In

this type of exercises, students are given a simple C

language program with a few blanks to fill in. When the

blanks are filled in and the form is submitted, it is

compiled and executed immediately.(See Fig. 3) This

type of problem is usually intended to be very easy, and

Fig. 1 The instructor's interface for creating a new question

Fig. 2 The student interface for a multiple choice question

Sehyeong Cho

공학교육연구 제17권 제4호, 201460

Fig. 3 Fill-in-the-blanks programming tool. Buttons at
the bottom are: compile, run, submit, and close.

is not designed to do any serious problem solving. Its

major role is to make sure the student keep his/her

attention. The example shown in Fig. 3 is an exercise of

memory allocation by “malloc” function.

On the instructor’s part, all the results are gathered

automatically and stored in a database for easier course

management.

2. Relevance

As introduced in the previous section, one strategy for

attaining relevance is to build on the previously acquired

knowledge or skill of the student. Also, the learner should

be able to appreciate what their program is doing for them.

In order to resolve this problem, we created an executable

flow-chart language called CFL, which stands for “C-like

Flowchart Language”. Instead of actually writing a C

program in text, students in the beginning of the course

use GUI-based flowchart language system(Fig. 4). Unlike

traditional flowchart, CFL can actually be executed,

either batch or step-by-step. They can watch the flow

of control and see the variables change their values.

Instructions provided are ordinary numerical expressions,

Boolean expressions, assignments, decision(if-else), repetition

loop, and function definition and invocation. We observed

that students who first studied with CFL are slower in

the beginning of the course, but they quickly catch up

and do better than other students[2].

Fig. 4 Flowchart programming system for enhancing relevance

3. Confidence

Confidence is necessary for students in order to have

interest in that topic. Lack of confidence leads to lack of

actions. The problem is how to make them quickly

“succeed” in their undertakings. If a task is too difficult,

it is hard to succeed; if too easy, it does not help build

strong confidence. We believe that the most important

factor here is now to get rapid feedback when students

make success in their tasks. The proposed web-based

tool provides rapid feedback by using first an automatic

grading tool, and then the actual grading system run by

the instructor or the teaching assistant.

Fig. 5 Web based programming interface

A Web-based Tool for Teaching Computer Programming

Journal of Engineering Education Research, 17(4), 2014 61

One advantage of this web-based tools is that statistics

is automatically obtained. Therefore the instructor is

informed of the number of students who wrote the correct

program, how long they took on the average, and the

deviation in completion times.

4. Satisfaction

Satisfaction has to do with reward. Since we cannot

give out any material reward, we decided to give out

their performance in real-time, as shown in Fig 6. The

instructor can choose either to show the detail or show

only individual score plus the average and the deviation

of the scores of the class.

The CFL programming also helps the students get the

feeling of confidence and satisfaction because it is much

easier to write programs.

Fig 6. Realtime scoreboard for satisfaction

IV. Conclusion

A web-based tool presented here enables the instructors

to easily assign homework and laboratory exercises to

students, as well as collect submissions, test programs,

record grade, and process class statistics. It also enables

the students to approach the tasks with ease, and makes

the task of submitting assigned work simple, and also

enables the students to test their program as they submit

it. It is also easy to see his or her status. More

importantly, they help keep the attention of students,

make them feel the topics and tasks are relevant to

them, thereby acquiring confidence and get rewarded. As

a result, the number of exercises has grown from 15 on

the average to more than 200 small exercises. The

failure rate dropped from around 30% to less than 20%.

References

 1. John M. Keller, “Development and use of the ARCS model

of instructional design,” Journal of instructional development,

September 1987, Volume 10, Issue 3, pp 2-10

 2. Sehyeong Cho, Yunseung Ryu, and Sang-Kyun Kim, “Learning

C programming by using executable flowchart language,”

in Proc. 2014 ASEE annual conference, Indianapolis 2014

Sehyeong Cho

Professor, Computer Engineering, Myongji University. Received
BS (1981) and MS (1983) from Seoul anational University. Received

Ph.D. (1992) from Pennsylvania State University. Worked as a

senior research scientist at ETRI (1992~2000). Current research

focuses on Computer Programming Education

Phone: 031‐330‐6779
E-mail: shcho@mju.ac.kr

