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VARIOUS FERROELECTRIC CONFIGURATIONS IN

LIQUID CRYSTALS

Jinhae Park*

Abstract. In this paper, we study ferroelectric configurations of
liquid crystals by nonlocal interaction energy associated with the
polarization.

1. Introduction

Let Ω be a bounded domain occupied by a ferroelectric liquid crys-
tal. In a system of ferroelectric liquid crystals, the polarization vector
field p, |p| = 1, plays an important role in the equilibrium states of the
system. There are two very distinct types which depend on the net po-
larization. In this case, several types of local polarization arrangements
are possible to produce the total value of the polarization. This explains
the observations of multiple periodic phases found in ferroelectric phases
of smectic C* [6, 14]. Assume that p = (p, 0, 0), The energy functional
associated with the polarization is given by

F̃ =

∫
Ω
W (p) dx + η

∫
Ω

∫
Ω
k(x− y)(p(x)− p(y))2 dy dx,

where W (p) = a0
4 (p2− 1)2, a0 > 0, η > 0, and q(x) =

∫
Ω k(x−y)p(y) dy

satisfies

−α∆q + q = p in Ω.(1.1)

We note that the term W (p) forces p to have values ±1. With p being
±1, q = ±1 are solutions of (1.1). This motivates us to replace W (p) by
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W (q). Then we obtain the modified energy functional to minimize on a
suitable subspace of W 2,2(Ω),

Fα(q) =

∫
Ω
{ηα2(∆q)2 + ηα|∇q|2 +

a0

4
(q2 − 1)2} dx.(1.2)

In this paper, we shall investigate configurations of the equilibrium states
of energy functionals related to the above energy in an appropriate sub-
space of W 2,2(Ω) and the corresponding limiting energy.

2. The limiting energy

In this section, we first consider Ω to be an open interval (−1, 1) and
study the behavior of minimizers of 1

a0
Fα as α→ 0.

Theorem 2.1. Let w : R → R be a minimizer of limα→0
1
a0
Fα(q)

and let

E = w′w′′′ − 1

2
(w′′)2 +

a

2
(w′)2 +

1

4
(1− w2)2.

If α→ 0+ and η > 4a0, then w belongs to one of the following cases:

(1) The three constant solutions: w = −1, w = 0, w = 1.
(2) Two kink solutions connecting w = −1 and w = 1 (modulo shifts).
(3) For each E ∈ (0, 1

4) there exists a unique periodic solution w(x,E)
that is even with respect to their critical points, odd with respect
to their zeros, and

max{|w(x,E)|x ∈ R} <
√

1− 2
√
E.

If α→ 0− or α→ 0+, 0 < η < 4a0, then the corresponding equation for
w has

(1) at least two kink type solutions with small and large oscillations
around 0 in a finite interval.

(2) at least two solutions with small and large pulses in a region and
have value 1 outside a finite interval. These solutions bifurcate
from the increasing kink at η = 8.

(3) infinitely many even and odd periodic solutions with small and
large oscillations.

Proof. We introduce

z =
x

ε
, ε = 4

√
2ηα2

a0
, a = −sign(α)

√
2η

a0
.
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Define uε : (−1
ε ,

1
ε )→ R by

uε(z) = qα(x) for all x ∈ (−1, 1).

Then we have

1

a0
Fα(q) =

∫ 1

−1

{
1

2
ε4(q′′)2 − a

2
ε2(q′)2 +

1

4
(q2 − 1)2

}
dx.

Suppose that {qα} is a minimizing sequence. Since ε→ 0 as α→ 0, the
function u(z) = limε→0 uε(z) is a minimizer of the new energy functional

F1(w) =

∫ ∞
−∞

{
1

2
(w′′)2 − a

2
(w′)2 +

1

4
(w2 − 1)2

}
dz.

The corresponding Euler-Lagrange equation is given by

d4w

dz4
+ a

d2w

dz2
+ w3 − w = 0.

The rest of the proof follows from previous results done by many authors
[7, 10, 11, 12, 13, 4, 2, 3].

The equation

d4u

dx4
+ a

d2u

dx2
+ u3 − u = 0.(2.1)

also arises in the study of pattern formations in physics and mechanics.
Especially, the equation (2.1) for a negative value a explains the sta-
tionary states for the Extended Fisher-Kolmogorov equation proposed
by Dee and van Saarloos [1]

∂v

∂t
= −γ ∂

4v

∂x4
+
∂2v

∂x2
+ v − v3,(2.2)

where γ > 0. It is easy to see that u and v are related as

v(x) = u(
x
4
√
γ

), a = − 1
√
γ
.

For a < 0, let u be a solution of (2.1). If we define

w(x) =
√
|κ− 1|u( 4

√
|κ− 1|x), a =

2

|κ− 1|
,

then w becomes a stationary solution of

∂w

∂t
= κw −

(
1 +

∂2

∂x2

)2
w − w3.
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which is known as the Swift-Hohenberg equation. For a ≤ −
√

8, it was
proved in [3] that solutions of (2.1) behave like solutions to Ginzburg-
Landau equation

u′′ + u− u3 = 0.

For more details about these equations, we refer the reader to [7, 10, 11,
12, 13, 4, 2, 3].

Notice that all these kinds of solutions in Theorem 2.1 exist for any
given α. In particular, if α > 0, then a < 0. This prevents the energy
functional from having chaotic critical points. One can expect the min-
imizers to approach to a function p0 having values only ±1 as ε → 0.
The limiting energy may be calculated from the number of jumps. In
case that α > 0, 2η = a0, we get a = −1 and define

Eε(q) =
1

εa0
Fα(q) =

1

2

∫ 1

−1
[ε3(q′′)2 + ε(q′)2 +

1

2ε
(q2 − 1)2] dx.

Let

E(q) =
1

2

∫
R

[(q′′)2 + (q′)2 +
1

2
(q2 − 1)2] dx,

and ξ± ∈ C∞ denote fixed functions satisfying both ξ±(x) = ∓1 for all
x ≤ −1 and ξ±(x) = ±1 for x ≥ 1.

It was shown in [8] that the functional E has global minimizers q± on
the affine spaces ξ± +W 2,2(R). Moreover, if (qε) is a sequence of mini-
mizers for Eε on a suitable subspace of W 2,2(−1, 1), then (qε) converges
to a function q(x) ∈ {−1, 1} in L1[−1, 1]. In particular, if N+ and N−

are the numbers of jumps from −1 to 1 and from 1 to −1 respectively,
then

Eε(qε)→ E0(q) as ε→ 0,

where E0(q) = N+E(q+) +N−E(q−).

3. Asymptotics with an application

In this section, we investigate the asymptotic behavior of the en-
ergy functional (1.2) when α approaches 0. Suppose that Ω is an open
bounded domain in R3 with Lipschitz boundary and α > 0. We consider
the admissible space of functions

X =

{
q ∈W 2,2(Ω);

∫
Ω
q dx = m|Ω|

}
,

where m ∈ [−1, 1].
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For each α > 0, let qα be a minimizer of Fα. It follows from the
standard arguments in Γ−convergence and Young measures that the
minimizing sequence {qα} generates a Young measure {µx}, i.e. there
exists a subsequence, not relabelled, which converges weakly star to q̄
where q̄(x) = µx = 1

2(1 + m)δ1 + 1
2(1 − m)δ−1. Here δx0 denotes the

Dirac delta at x0. It is easy to see that infα→0{Fα(q) : q ∈ X} = 0. We
now define

Gα(q) =

{
1
εa0
Fα(q) if q ∈ X ,
∞ if q ∈ L1(Ω) \ X .

If ε = 4

√
2ηα2

a0
, then Gα can be written as

Gα(q) =

∫
Ω
{1

2
ε3|∆q|2 + ε

√
η

2a0
|∇q|2 +

1

4ε
(q2 − 1)2} dx.

Applying Theorem 4.1 in [5], we obtain the following Modica-Mortola
type theorem.

Theorem 3.1. Let Ω be an open bounded domain in R3 with Lip-
schitz boundary. Then the sequence Gα Γ−converges to G0 in L1(Ω),
where

G0(u) =

{
1
2c1||Du|| if u ∈ X̃ ,
∞ otherwise ,

where
X̃ =

{
q ∈ BV (Ω);

∫
Ω q dx = m|Ω|, q(x) ∈ {−1, 1}, for a.e. x ∈ Ω

}
,

c1 = min
{∫

R
{ 12 (w′′)2 +

√
η

2a0
(w′)2 + 1

4 (w2 − 1)2} dx;w′, w′′, w2 − 1 ∈ L2(R)
}
,

and ||Du|| = sup{
∫

Ω u div ϕdx : ϕ ∈ C1
c (Ω,R3), ||ϕ||∞ ≤ 1}.

As an application, we let the molecular director field n = (a cosφ, a sinφ,
c) and the polarization field p = (p, 0, 0) in the bookshelf geometry for
smectic liquid crystals [9]. After certain scalings, we may assume that
the structure of the system is governed by the energy functional

Gε(φ, p) =

∫ 1

0

{
a2(φ′)2 − 2acp′ cosφ+

1

2
ε4(p′′)2 − a

2
ε2(p′)2 +

1

4
(p2 − 1)2

}
dx.

The first term in the energy is one constant elastic energy for the Oseen-
Frank energy and the second term accounts for interactions of the direc-
tor field with the polarization [9]. The last remaining parts are terms
associated with the polarization field. Let

Fε =

∫ 1

0

{
1

2
ε4(q′′)2 − a

2
ε2(q′)2 +

1

4
(q2 − 1)2

}
dx.
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Let (φε, pε) be a sequence of minimizers of Gε in Y, where

Y =

{
(φ, p) ∈W 1,2(0, 1)×W 2,2(0, 1)|

∫ 1

0
p(x) dx = d

}
,

with a constant −1 ≤ d ≤ 1. It follows from the previous section that
as ε→ 0, the energy Gε(φε, pε) behaves like

FOF (φε, pε) :=

∫ 1

0

{
a2(φ′ε)

2 − 2acp′ε cosφε
}
dx.

Let {pε} converge to p ∈ BV ((0, 1), {±1}). In order to understand
the behavior of φε as ε → 0, we let {φε} converge to a function φ as
ε→ 0.

Since p ∈ BV ((0, 1), {±1}), we take 0 < z1 < z2 <, · · · , zN < 1 the
points where p jumps. Then p′ would be either

δz1 − δz2 + δz3 − ...+ (−1)N+1δzN

or

−(δz1 − δz2 + δz3 − ...+ (−1)N+1δzN ).

Assuming p′ = δz1 − δz2 + δz3 − ...+ (−1)N+1δzN , we obtain that

FOF (φ, p)

=

∫ 1

0
a2(φ′)2 dz

−2ac[cosφ(z1)− cosφ(z2) + cosφ(z3)− · · ·+ (−1)N cosφ(zN )].

In order for φ to minimize FOF (φ, p), φ must satisfy

cos(φ(z1)) = 1, cos(φ(z2)) = −1, · · · , cos(φ(zN )) = (−1)N+1,

so that

φ(z1) = φ(z3) = · · · = 0, φ(z2) = φ(z4) = · · · = ±π.

For each interval (zi, zi+1), φ satisfies the equation

φ′′ = 0,

φ(zi) = 0( or ± π), φ(zi+1) = ±π (or 0).

Combining them together, we construct a piecewise linear function φ
independent of ε which minimizes FOF (·, p). This analysis suggests that
bulk part of the total energy forces the molecules to rotate by the angle
π when they move from one layer to another.
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