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A SEXTIC-ORDER SIMPLE-ROOT FINDER WITH

RATIONAL WEIGHTING FUNCTIONS OF

DERIVATIVE-TO-DERIVATIVE RATIOS

Young Ik Kim*

Abstract. A three-step sextic simple-root finder is constructed
with the use of weighting functions of derivative-to-derivative ratios.
Their convergence and computational properties are investigated
along with concrete numerical examples to verify the theoretical
analysis.

1. Introduction

High-order multipoint root-finders have been developed for a given
nonlinear equation f(x) = 0, some of which can be found in [7, 11, 13].
Simple-root finders using more than two derivatives are rarely found.
Jarratt[8], in 1966, suggested a multipoint iterative methods of order 4
or 5 costing three derivatives and one function below in (1.1):

yn = xn + γ f(xn)
f ′(xn)

, γ ∈ R,
zn = xn + β f(xn)

f ′(xn)
+ σ f(xn)

f ′(yn)
, β, σ ∈ R,

xn+1 = xn − f(xn)
a1f ′(xn)+a2f ′(yn)+a3f ′(zn)

, a1, a2, a3 ∈ R.
(1.1)

Definition 1.1. (Error equation, asymptotic error constant, order of con-

vergence) Let x0, x1, · · · , xn, · · · be a sequence of numbers converging to α. Let

en = xn − α for n = 0, 1, 2, · · · . If constants p ≥ 1, c 6= 0 exist in such a way

that en+1 = c en
p + O(ep+1

n ) called the error equation, then p and η = |c| are

said to be the order of convergence and the asymptotic error constant, respec-

tively. It is easy to find c = limn→∞
en+1

enp
. Some authors call c the asymptotic

error constant.
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If we select α 6= −2
3 , θ 6= 0, θ 6= α with θ = β+γ in (1.1), then we find a

two-parameter family of fourth-order methods if a1 = 6αθ+3(α+θ)+2
6αθ , a2 =

3θ+2
6α(α−θ) , a3 = 3α+2

6θ(θ−α) , β = θ − 3θ(θ−α)
2α(3α+2) , γ = 3θ(θ−α)

2α(3α+2) are chosen. For

α = −2
3 , we have θ = α = −2

3 , a1 = 1
4 , a2 = 3

4 + 3
8γ , a3 = − 3

8γ , β = −2
3−γ

and hence a one-parameter family of fourth methods are found. In
particular, for α = −1, θ = −1

2 , a1 = 1
6 , a2 = 1

6 , a3 = 2
3 , β = −1

8 , γ = −3
8 ,

we obtain a fifth-order method, whose asymptotic error constant is given
by:

c42 +
c22c3

8
− c23

4
+
c2c4

2
+
c5
24
, (1.2)

which Jarratt did not show.

Three-point sextic-order methods with two derivatives can be found
in [6, 9, 15] as well as in the works of Chun[5] and Parhi et al.[10]
respectively shown in (1.3) and (1.4) below.

yn = xn − 2
3
f(xn)
f ′(xn)

,

zn = xn − Jf (xn) · f(xn)f ′(xn)
, Jf (xn) = 3f ′(yn)+f

′(xn)
6f ′(yn)−2f ′(xn) ,

xn+1 = zn − f(zn)

a(zn−xn)(zn−yn)+ 3
2Jf (xn)f

′(yn)+(1− 3
2Jf (xn))f

′(xn)
, a ∈ R.

(1.3)


yn = xn − f(xn)

f ′(xn)
,

zn = xn − 2f(xn)
f ′(xn)+f ′(yn)

,

xn+1 = zn − f ′(xn)+f
′(yn)

3f ′(yn)−f ′(xn) ·
f(zn)
f ′(xn)

.

(1.4)

The main objective of this is to develop a more general class of three-
point sixth-order Jarratt-like methods requiring three derivatives and
one function. To this end, by modifying and extending (1.1), we consider
a general family of three-point methods in the following form:

yn = xn − γ · f(xn)f ′(xn)
, γ ∈ R,

zn = xn − (β + σs) · f(xn)f ′(xn)
, s = f ′(yn)

f ′(xn)
, β, σ ∈ R,

xn+1 = xn − (1+b1(s−1)+b2(s−1)2+b3(t−1)+b4(t−1)2
(1+a1(s−1)+a2(s−1)2+a3(t−1)+a4(t−1)2 ·

f(xn)
f ′(xn)

, t = f ′(zn)
f ′(xn)

,

(1.5)

where γ, β, σ ∈ R, ai, bi(1 ≤ i ≤ 4) are parameters to be determined
for sextic-order convergence. In Section 2, a successful development is
described for a new family of sixth-order methods. Section 3 presents
numerical experiments along with concluding remarks.
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2. Convergence analysis

The desired conditions on parameters γ, β, σ ∈ R, ai, bi(1 ≤ i ≤ 4)
will be obtained along with the proof of Theorem 2.1 describing the
methodology and convergence analysis on iterative scheme (1.5).

Theorem 2.1. Assume that f : C → C has a simple root α and is

analytic in a region containing α. Let ∆ = f ′(α) and cj = f (j)(α)
j!f ′(α) for j =

2, 3, · · · . Let γ, β, σ, ai, bi(1 ≤ i ≤ 4) ∈ R be some parameters in (1.5).
Let x0 be an initial guess chosen in a sufficiently small neighborhood

of α. Let γ = 6−
√
6

10 , β = 6+
√
6

10 , σ = −3+8
√
6

25 and a1 = − (41+21
√
6)

12 ,

a2 = −5(38+13
√
6)

48 , a3 = 31+9
√
6

12 , a4 = 118−23
√
6

48 , b1 = − (139+64
√
6)

36 , b2 =

−5(8+3
√
6)

36 , b3 = 7(11+4
√
6)

36 , b4 = 54−19
√
6

36 . Then iterative scheme (1.5)
defines a sextic-order simple-root finders satisfying the error equation
below: for n = 0, 1, 2, · · · ,

en+1 =
(
φ1c

5
2 + φ2c

3
2c3 + φ3c

2
2c4 + φ4c3c4 + φ5c2c

2
3

+φ6c2c5 + φ7c6
)
e6n +O(e7n), (2.1)

where φ1 = 41−19
√
6

5 , φ2 = −761+454
√
6

100 , φ3 = 53−12
√
6

25 , φ4 = −2+3
√
6

50 ,

φ5 = −224+171
√
6

400 , φ6 = −4+
√
6

20 and φ7 = 1
100 .

Proof. Taylor series expansion of f(xn) about α up to 6th-order terms
yields with f(α) = 0:

f(xn) = ∆{en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n +O(e7n)}. (2.2)

It follows that

f ′(xn) = ∆{1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n

+6c6e
5
n + 7c7e

6
n +O(e7n)}. (2.3)

For brevity of notation, en will be denoted by e throughout the proof.
With the aid of symbolic computation of Mathematica[16], we have:

yn = xn − γ
f(xn)

f ′(xn)
= α+ (1− γ)e+ c2γe

2 + 2γ(−c22 + c3)e
3

+Y4e
4 + Y5e

5 + Y6e
6
n +O(e7), (2.4)

where Y4 = γ(4c32−7c2c3+3c4), Y5 = −2γ(4c42−10c22c3+3c23+5c2c4−2c5)
and Y6 = γ(16c52 − 52c32c3 + 33c2c

2
3 + 28c22c4 − 17c3c4 − 13c2c5 + 5c6). In

view of the fact that f ′(yn) = f ′(xn)|en→(yn−α), we get:

f ′(yn) = ∆[1 + (1− γ)c2e+ {3(1− γ)2c3 + 2γc22}e2
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+D3e
3 + Σ6

i=4 Di e
i +O(e7)], (2.5)

whereD3 = 2{2(1−γ)3c4−γc2(2c22+(3γ−5)c3)}, Di = Di(γ, c2, c3, · · · , c6)
for 4 ≤ i ≤ 6.

s =
f ′(yn)

f ′(xn)
= 1−2γc2e+3γ(2c22+(γ−2)c3)e

2+Σ6
i=3 Ei e

i+O(e7), (2.6a)

where Ei = Ei(γ, c2, c3, · · · , c6) is a multivariate polynomial in c2, c3,
· · · , c6 for 3 ≤ i ≤ 6.

Hence with β = 4− 5
√
6

3 and σ = −3+8
√
6

25 we have:

zn = xn − (β + σs) · f(xn)

f ′(xn)
= (1− β)e+ (β + 2γσ)c2e

2

+Σ6
i=3 Fi e

i +O(e7), (2.6b)

where Fi = Fi(β, γ, σ, c2, c3, · · · , c6) for 3 ≤ i ≤ 6.
In view of the fact that f ′(zn) = f ′(xn)|en→(zn−α), we get:

f ′(zn) = ∆[1 + 2(1− β)c2e+ [3c3(1− β)2 + 2c22(β + 2γσ)]e2

+Σ6
i=3 Gi e

i +O(e7)], (2.7)

where Gi = Gi(β, γ, σ, c2, c3,· · · , c6) for 3 ≤ i ≤ 6.
By direct substitution of zn, f(xn), f ′(xn), f ′(yn), f ′(zn) with s =

f ′(yn)
f ′(xn)

, t = f ′(zn)
f ′(xn)

in (1.5), we find

xn+1 = xn−
(1 + b1(s− 1) + b2(s− 1)2 + b3(t− 1) + b4(t− 1)2

(1 + a1(s− 1) + a2(s− 1)2 + a3(t− 1) + a4(t− 1)2
· f(xn)

f ′(xn)

= α+ (1− 2(a3 − b3)β − 2(a1 − b1)γ)e2 + σ6i=3 Γi e
i +O(e7), (2.8)

where Γi = Γi(aj , bk, β, γ, σ, c2, c3, · · · , c6) for 3 ≤ i ≤ 6 and 1 ≤ j, k ≤ 4.
By solving 1 − 2(a3 − b3)β − 2(a1 − b1)γ = 0 from (2.8) for a1, we

immediately obtain

a1 = b1 −
1− 2β(a3 − b3)

2γ
. (2.9)

By substituting a1 into Γ3 = 0, we find two relations independently of
c2 and c3 below:

−2 + 6(a3 − b3)β(β − γ) + 3γ = 0,

1 + 4(a4 − b4)β2 − 2(b1γ + b3β) + 4(a2 − b2)γ2 + 4(a3 − b3)γσ = 0.

As a result, we find

a3 =
1 + 4(a4 − b4)β2 − 2b1γ + 4(a2 − b2)γ2

2β
+

(2− 3γ)(β + 2γσ)

6β2(β − γ)
,
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b3 =
1 + 4(a4 − b4)β2 − 2b1γ + 4(a2 − b2)γ2

2β
+

(2− 3γ)γσ

3β2(β − γ)
. (2.10)

By substituting a1, a3, b3 into Γ4 = 0, we find three relations indepen-
dently of c2, c3 and c4 with β(β − γ) 6= 0 below:

3− 4γ + β(6γ − 4) = 0,

2γ(3γ − 2)[−2 + (4a2 + 3b1 − 4b2)γ
2 − 12(a2 − b2)γ3]

(6γ2 − 8γ + 3)

−2γ(3γ − 2)2(−1− 12γ + 18γ2)σ

3(4γ − 3)(6γ2 − 8γ + 3)

+
(3− 4γ)2[(a4 − b4)(6γ2 − 8γ + 3)− 3(2− 3γ)2(1− 2b1γ + 4(a2 − b2)γ2)]

4(3γ − 2)3(6γ2 − 8γ + 3)

+
(4γ − 3)[4 + 3γ + (−8a2 − 12b1 + 8b2)γ

2 + 36(a2 − b2)γ3]
2(6γ2 − 8γ + 3)

= 0,

−(a4 − 2b4)(3− 4γ)2 + (2− 3γ)2[−1 + 4(a2 − 2b2)γ
2]

(2− 3γ)2

+
32γ2(−2 + 3γ)4σ2

3(−3 + 4γ)2(6γ2 − 8γ + 3)

+
4γσ(2− 3γ)[1− 6γ(b1 − 2a2γ + 2b2γ)(6γ2 − 8γ + 3)]

3(3− 4γ)(6γ2 − 8γ + 3)

+
4γσ(−a4 + b4)(3− 4γ)

(2− 3γ)
= 0. (2.11)

Solving (2.11) for β, a4, b4 yields

β =
3− 4γ

4− 6γ
,

a4 =
−6 + β[3 + 12γ(−b1 + 3a2γ − 4b2γ)] + 4γ2[3b1 + 2(a2 − 6a2γ + 6b2γ)]

4β2(−2 + 3β)

−γσ[−4 + 12β + (12 + 3(−3 + 4b1)β)γ − 6(3 + 2b1)γ
2]

6β3(−2 + 3β)(β − γ)

−γ
3σ[4(a2 − b2)(3γ − 2)− 3b1]

β3(−2 + 3β)

+
γ2σ2(−2 + 3γ)(−4 + 6β + 3γ)

3β4(−2 + 3β)(β − γ)
,

b4 =
−1 + 3b1γ(−β + γ) + 2γ2[6a2(β − γ) + b2(2− 9β + 6γ)]

2β2(−2 + 3β)
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+
γ2σ2(−2 + 3γ)(−4 + 6β + 3γ)

3β4(−2 + 3β)(β − γ)

+
γσ[−2β(1 + 2b1γ) + (3 + 4b1)γ

2]

2β3(−2 + 3β)(β − γ)

+
γ3σ[4(a2 − b2)(2− 3γ) + 3b1]

β3(−2 + β)
. (2.12)

By substituting a1, a3, b3, β, a4, b4 into Γ5 = 0, we find five relations
independently of c2, c3, c4 and c5 below:

3− 12γ + 10γ2 = 0, 3 + γ2(6− 24σ) + 18γ3σ + γ(−9 + 8σ) = 0,

125(137609 + 57501
√

6) + 648(28357 + 11923
√

6)a2

−2250(4202 + 1753
√

6)b1 − 648(28357 + 11923
√

6)b2 = 0,

325(229308 + 91387
√

6)− 72(945441 + 409574
√

6)a2

+90(647706 + 261659
√

6)b1 + 72(655416 + 304849
√

6)b2 = 0,

−25(36683358 + 14824337
√

6) + 72(2673882 + 1215523
√

6)a2

−540(627727 + 253603
√

6)b1 + 288(672867 + 227813
√

6)b2 = 0. (2.13)

Solving (2.13) for γ, σ, b1, a2, b2 and simplifying, we obtain:

σ = −(3 + 8
√

6)

25
, γ =

6−
√

6

10
,

a2 = −5(38 + 13
√

6)

48
, b1 = −(139 + 64

√
6)

36
, b2 = −5(8 + 3

√
6)

36
. (2.14)

After substituting (2.14) into (2.9), (2.10),(2.12), we further simplify:

a1 = −(41 + 21
√

6)

12
, a3 =

31 + 9
√

6

12
, b3 =

7(11 + 4
√

6)

36
,

β =
6 +
√

6

10
, a4 =

118− 23
√

6

48
, b4 =

54− 19
√

6

36
. (2.15)

We finally substitute overall relations found so far into Γ6 to obtain
Γ6 =

(
φ1c

5
2 + φ2c

3
2c3 + φ3c

2
2c4 + φ4c3c4 + φ5c2c

2
3 + φ6c2c5 + φ7c6

)
, where

φi are described in (2.1). This completes the proof.

Remark 2.2. From the first two equations of (2.13), the other pair

of values for σ, γ is possible with σ = − (3−8
√
6)

25 , γ = 6+
√
6

10 . In this case,

β = 6−
√
6

10 and all coefficients ai, bj can be obtained with
√

6 replaced by

−
√

6.
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3. Numerical experiments and concluding remarks

Many numerical analysis arising in engineering problems often re-
quires a large number of working-precision digits. Computing asymp-

totic error constants η = limn→∞
|en|
|en−1|p with several significant digits of

accuracy would encounter extreme calculations due to the indeterminate
form of a small-number division near the root α.

In the current numerical experiments, high-precision computing with
programming language Mathematica (Version 7) has been performed
with 100 working-precision digits, being large enough to minimize round-
off errors as well as to clearly observe the computed asymptotic error
constants requiring small-number divisions. In addition, the error bound
ε = 1

2 × 10−80 was used. The values of initial guess x0 were selected
close to α to guarantee the convergence of the iterative methods. Only
15 significant digits of approximated roots xn are displayed in Tables
1-3 due to the limited paper space, although 80 significant digits are
available. Numerical experiments have been carried out on a personal
computer equipped with an AMD 3.1 Ghz dual-core processor and 64-bit
Windows 7 operating system.

Iterative method (1.5) was identified by Y1 and has shown acceptable
performance when applied to a test function:

F1(x) = sin(x+ 1)− x+ 2, α ≈ 2.07076672714204.

Definition 3.1. (Asymptotic Convergence Order) Assume that the as-

ymptotic error constant η = limn→∞
|en|
|en−1|p is known. Then we can define

the asymptotic convergence order pa = limn→∞
log |en/η|
log |en−1| , being abbreviated by

ACO.

Method Y1 in Table 1 clearly confirmed hexic-order convergence.
Table 1 lists iteration indexes n, approximate zeros xn, residual errors
|f(xn)|, errors |en| = |xn − α| and computational asymptotic error con-
stants ηn = | en

en−1
6 | as well as the theoretical asymptotic error constant

η and computational asymptotic convergence order pn = log |en/η|
log |en−1| . The

values of ηn agree up to 7 significant digits with η. As expected, the
computed asymptotic order of convergence well approaches 6.

Additional functions below are tested to verify the convergence be-
havior of proposed scheme (1.5):
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n xn |F (xn)| |en|
∣∣∣∣ en
en−1

6

∣∣∣∣ η pn

0 1.9 0.339249 0.170767
1 2.07076671448853 2.527×10−8 1.265×10−8 0.0005102599209 0.0002274623374 5.54288
2 2.07076672714204 1.864×10−51 9.336×10−52 0.0002274623568 6.00000
3 2.07076672714204 0.0×10−99 0.0×10−99

pn =
log |en/η|
log |en−1|

, ∗
(0.95

1.5

)
= 0.95 + 1.5i

Table 1. Convergence for sample test functions F1(x)
with method Y1

f x0 |xn − α| JA CH PG Y1

f1 −0.31 |x1 − α| 2.39e-8∗ 9.17e-10 3.67e-9 1.06e-9
|x2 − α| 3.95e-38 3.69e-54 6.54e-50 6.66e-54
|x3 − α| 0.0e-100 0.0e-100 0.0e-100 0.0e-100

f2 1.2 |x1 − α| 4.14e-5 3.76e-6 1.85e-5 3.02e-6
|x2 − α| 4.92e-21 3.78e-29 9.59e-27 6.06e-32
|x3 − α| 0.0e-99 0.0e-99 0.0e-99 0.0e-99

f3 0.45 |x1 − α| 1.05e-7 8.84e-9 1.28e-8 1.90e-8
+0.85i |x2 − α| 1.99e-36 9.56e-50 1.36e-48 1.75e-47

|x3 − α| 0.0e-100 0.0e-99 0.0e-99 0.0e-100

f4 0.1 |x1 − α| 8.32e-7 5.00e-7 2.41e-6 3.87e-8
|x2 − α| 5.39e-32 1.01e-38 5.08e-34 1.91e-45
|x3 − α| 0.0e-130 0.0e-137 0.0e-199 0.0e-144

f5 0.84 |x1 − α| 2.55e-7 2.22e-9 8.79e-9 5.24e-9
|x2 − α| 2.87e-33 98.93e-53 1.04e-48 4.14e-50
|x3 − α| 0.0e-100 0.0e-100 0.0e-100 0.0e-100

f6 1.1 |x1 − α| 2.77e-6 1.78e-7 2.91e-7 3.91e-7
|x2 − α| 1.12e-27 1.09e-40 7.98e-40 9.86e-39
|x3 − α| 0.0e-99 0.0e-99 0.0e-99 0.0e-99

f7 0.3 |x1 − α| 5.33e-10 1.08e-11 7.57e-12 4.84e-12
|x2 − α| 3.31e-48 8.90e-68 6.59e-69 2.21e-70
|x3 − α| 0.0e-100 0.0e-100 0.0e-100 0.0e-100

∗ 2.39e-8 denotes 2.39 ×10−8

Table 2. Comparison of |xn−α| for f1(x)−f7(x) among
listed methods

f1(x) = x cos 3π
2
x− log (x2 − 1

x
− 19

9
), α = −1/3, x0 = −0.31,

f2(x) =
√
2x cosx2 − log (e+ 8x2 − 4π) + 1, α =

√
π
2
, x0 = 1.2,

f3(x) = cos (x2 − x+ 37
36

) + 3x− 5
2
− i
√
7, α = 1

2
+ i
√
7

3
, x0 = 0.45 + 0.85i, i =

√
−1,

f4(x) = x3 − 2 + (x+ 2) log (e+ x2), α = 0, x0 = 0.1,
f5(x) = x5 + x3 + e2x − 7, α ≈ 0.878720933693359, x0 = 0.84,

f6(x) = 4 cos2 x+ log (e2 + 9x2 − π2)− 3, α = π/3, x0 = 1.1,

f7(x) = 3x2 + xe1−x
2
+ sin (x3 + 2)− 2, α ≈ 0.323329877529435, x0 = 0.3,

with log z (z ∈ C) representing a principal analytic branch such that − π ≤ Im(log z) < π.
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f x0 pn JA CH PG Y1

f1 -0.31 p1 5.10138 6.02347 6.04048 5.90624
p2 5.00000 6.00000 6.00000 6.00000

f2 1.2 p1 4.70107 5.28779 5.57932 5.82983
p2 4.99994 5.99998 6.00003 6.00000

f3 0.45 p1 5.02463 5.99413 6.01727 5.93624
+0.85i p2 5.00000 6.00000 6.00000 6.00000

f4 0.1 p1 5.20917 6.11028 6.03205 7.16720
p2 5.00000 6.00000 6.00000 6.00000

f5 0.84 p1 4.96969 6.03203 5.95361 6.07670
p2 5.00000 6.00000 6.00000 6.00000

f6 1.1 p1 5.00471 5.69594 5.21100 5.35830
p2 5.00000 6.00000 6.00000 6.00000

f7 0.3 p1 4.99851 5.93970 5.92075 5.85203
p2 5.00000 6.00000 6.00000 6.00000

Table 3. Comparison of computational ACO pn =
log |en/η|
log |en−1| for f1(x)− f7(x)

For the purpose of comparison, we first identify methods (1.1), (1.3),
(1.4) by JA, CH, PG, respectively. Table 2 displays the values of
|xn − α| for methods JA, CH, PG, Y1. As a result of Table 2, pro-
posed method shows favorable or equivalent performance as compared
with existing methods JA, CH and PG. In Table 2, italicized numbers
indicates the least errors |xn −α|. When the same order of convergence
is known, one should note that the local convergence of |xn−α| behaves
differently depending on cj , namely f(x) and α. Table 3 well exhibits
computational convergence orders of the listed methods, among which
method Y1 clearly shows the convergence order of 6.

During the current numerical experiments, CH has shown best accu-
racy for f3, f5, while Y1 for f2, f4, f7. On the other hand, two methods
CH, Y1 have shown similar performance for f1 and three methods CH,
PG, Y1 for f6. Computational accuracy is sensitively dependent on the
structures of the iterative methods, the sought zeros and the test func-
tions as well as good initial approximations. We should be aware that
no iterative method always shows best accuracy for all the test func-
tions. The corresponding efficiency index for the proposed method (1.5)

is found to be 61/4, which is same as those of listed sextic-order methods
but better than that of fourth-order Jarratt’s method [2]. A new devel-
opment of a family of higher-order iterative methods will be pursued in
the near future using the current approach employing three derivatives
and one function.
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