JOURNAL OF THE

CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 27, No. 4, November 2014
http://dx.doi.org/10.14403/jcms.2014.27.4.753

A SEXTIC-ORDER SIMPLE-ROOT FINDER WITH
RATIONAL WEIGHTING FUNCTIONS OF
DERIVATIVE-TO-DERIVATIVE RATIOS

Younc Ik Kiv*

ABSTRACT. A three-step sextic simple-root finder is constructed
with the use of weighting functions of derivative-to-derivative ratios.
Their convergence and computational properties are investigated
along with concrete numerical examples to verify the theoretical
analysis.

1. Introduction

High-order multipoint root-finders have been developed for a given
nonlinear equation f(z) = 0, some of which can be found in [7, 11, 13].
Simple-root finders using more than two derivatives are rarely found.
Jarratt[8], in 1966, suggested a multipoint iterative methods of order 4
or 5 costing three derivatives and one function below in (1.1):

Yn = Tp + 'YJ{/((ZZ) , v ER,

)
on = an + BEES + o fi) B0 € R, (1.1)

Tn

Tntl = Tn = G e () Fas (e 41 02 43 € R.

DEFINITION 1.1. (Error equation, asymptotic error constant, order of con-
vergence) Let zg, 1, , &y, - be a sequence of numbers converging to a. Let
en =2, —aforn=20,1,2,---. If constants p > 1, ¢ # 0 exist in such a way
that e, 11 = c e,? + O(el1) called the error equation, then p and n = |c| are
said to be the order of convergence and the asymptotic error constant, respec-

€n41

tively. It is easy to find ¢ = lim,, =k Some authors call ¢ the asymptotic
error constant.
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If we select @ # —2 ,0 #0,0 # awith = S+vin (1.1), then we find a
_ 6af+3(a+0)+2

two-parameter famlly of fourth-order methods if a; = ===, a2 =
30+2 _ _p_ 30(0—q) _ 30(0—w)
6a(a—0) 43 = 69(9—a)75 = 2a(3042)° Y = 2a(3atz) are chosen. For
__2 2 _ 1 _ 3,3 _ 3 a__2
a=-—g,wehave =a=—5,a1 = j,a20 = 345,03 = —55, 6 =—5-7
and hence a one-parameter family of fourth methods are found. In
: 1 1 1 2 1 3
particular, for a = —1,0 = —5,a1 = 5,a2 = 5,a3 = 3,8 = —3,7 = —%,

we obtain a fifth-order method, whose asymptotic error constant is given

by:

0303
8

which Jarratt did not show.

Three-point sextic-order methods with two derivatives can be found
n [6, 9, 15] as well as in the works of Chun[5] and Parhi et al.[10]
respectively shown in (1.3) and (1.4) below.

2
4 a3 Cs5
=4+ — 4+ = 1.2

— o _ 2 f(@n)
yn_xn 3f’(w)

3f )+ £ (x0)

#n = n = Jy(@n) - (w )va(“”") :f 57 Twn) =2 (@)
Tnt1 = Zn = a(zn—xn)<zn—yn>+gg1f<a’cn)f'(yn>+<1—%=1f<zn))f'(xn) ya€R.
(1.3)
— _ f(wn)
Yn = Tp f/(x;f)(a :
=T T o) (1.4)

f (Irt)+f (yn) . f(Zn)
Tntl = Zn = 370y, ) (xn) T (@a)”

The main objective of this is to develop a more general class of three-
point sixth-order Jarratt-like methods requiring three derivatives and
one function. To this end, by modifying and extending (1.1), we consider
a general family of three-point methods in the following form:

Yn = Tn — 7 ;”((g;n))’ v €R,

Zn :mn*(ﬂ+05) ){/((J;T;))v s = ?Eg:% 670 ERa

r — (14b1(s=1)+ba(s—1)°+b3(t—1)+bs(t—1)>  f(zn) t— £ Gn
n+l n (14a1(s—1)+az2(s—1)2+az(t—1)+as(t—1)2  f/(zn)’ f(

(1.5)
where v, 3,0 € R, a;,b;(1 < i < 4) are parameters to be determined
for sextic-order convergence. In Section 2, a successful development is
described for a new family of sixth-order methods. Section 3 presents
numerical experiments along with concluding remarks.
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2. Convergence analysis

The desired conditions on parameters v, 3,0 € R, a;,b;(1 < i < 4)
will be obtained along with the proof of Theorem 2.1 describing the
methodology and convergence analysis on iterative scheme (1.5).

THEOREM 2.1. Assume that f : C — C has a simple root a and is
analytic in a region containing . Let A = f'(a) and ¢; = % for j =
2,3,---. Let v,B,0,a;,b;(1 <i < 4) € R be some parameters in (1.5).
Let x¢ be an initial guess chosen in a sufficiently small neighborhood

of a. Let v = 6_1(\)/6,5 = 76%/6,0 = —73+285\/6 and a; = _7(41+1221‘/6),
5(38+13v6 1 118—2 139+64V/6

a2 = — ( 18 )7a3:3tg\/6aa4: 8483\/6; blz_( 36 )¢b2:

—5(8272’\/6), by = 7(11;:764\/6),()4 = 54%69\/6. Then iterative scheme (1.5)

defines a sextic-order simple-root finders satisfying the error equation
below: forn=0,1,2,---,

ent1 = (0165 + pacdes + p3cses + pacses + dseacy

+¢cacs + Pree) e + O(ey), (2.1)
where ¢; = 41*%@’ bo = %%54\/6’ b3 = %52\/57 by = _2+E:)30«/57
gy = — 2NV o A g gy — L

Proof. Taylor series expansion of f(x,) about « up to 6th-order terms
yields with f(«) = 0:

f(xn) = Afen + c2e2 + c3ed + caed + c5ed + ceel + 0(el)}.  (2.2)
It follows that
f(xn) = A{1 + 2coe,, + 3c3€2 + deged + Seser
+6cged + Terel + O(el)}. (2.3)

For brevity of notation, e, will be denoted by e throughout the proof.
With the aid of symbolic computation of Mathematica[16], we have:

x
Yn = Tn — 7;,((3:1)) =a+ (1 - 7)6 + 62762 + 2’7(_63 + 03)63
+Yaet + Yse® + Yeeb 4+ 0(e"), (2.4)

where Yy = y(4c3 —Teacz+3cy), Vs = —2’7(46%—106%634—36%-{—56204—265)
and Ys = v(16¢3 — 52c3c3 + 33cacs + 28c3cy — 17czeq — 13c2¢5 + 5eg). In
view of the fact that f'(yn) = f'(zn)le,—(yn—a), We get:

f'(yn) = AL+ (1 = 7)eze + {3(1 = 7)%es + 27¢3}e
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+D3e + %9, D; et + 0(e)], (2.5)
where D3 = 2{2(1—7)?cs—yca(2¢3+(37=5)c3)}, Di = Di(v, ea,¢3, -+, ¢6)
for 4 <i<6.

/
s = :}{/((yng = 1-2yc2e+3v(2c5+(7—2)c3)e®+X8_5 E; ' +0(e), (2.6a)
L,
where E; = E;(vy,c2,c3, -+ ,¢¢) is a multivariate polynomial in ¢y, c3,
- ,cg for 3 <i <6.

Hence with g =4 — 56 and o = —%5\/6 we have:

3
I (%)
+38 5 Fy et +0(€), (2.6b)
where F; = F;(B,v,0,ca2,c3, -+ ,c¢) for 3 <1 <6.
In view of the fact that f'(zn) = f'(zn)le,—(2n—a), We get:

f'(zn) = AL+ 2(1 = B)ege + [Bes(1 — B)? + 265(8 + 2y0)]e?
+38 . Gy et 4+ 0(eN)], (2.7)
where G; = G;(B,7,0,ca,¢3, -+ ,cg) for 3 < i <6.
By direct substitution of z,, f(xn), f'(xn), f'(yn), f'(z,) with s =

Sl ¢ = L i (15), we find

1+0b -1 b -1
an:xn_(( +b1(s— 1)+ ba(s

Zn =n — (B +0s) = (1= B)e+ (8 +2y0)cae”

)2 +b3(t = 1) + ba(t —1)*  f(n)
I+ai(s—1)+as(s—1)2+as(t—1)+as(t —1)% f'(zy)
=a+ (1—-2(az —b3)8 —2(a; —b1)y)e2 + oS s Ty et + 0(e7), (2.8)
where I'; = T'y(aj, by, B,7,0,¢2,¢3,- -+ ,c6) for 3 <i < 6and1 < j,k < 4.

By solving 1 — 2(asz — b3)B8 — 2(a; — b1)y = 0 from (2.8) for a;, we
immediately obtain

1-— 2,3((13 — bg)
=b; — . 2.9
a; = b 2 (2.9)
By substituting a; into I's = 0, we find two relations independently of
co and cg below:

—2+6(as — b3)B(B =) +3v =0,
1+ 4(as — b)B® — 2(bry + b3fB) + 4(az — b2)y* + 4(as — bs)yo = 0.
As a result, we find
_ 1+ 4(@4 - b4)52 — 2b1’)/ + 4(@2 - bQ)’}/Q (2 - 3’}/)(/8 + 2’)/0')
23 6828 —7)

as
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by — 1+ 4(ag — ba)* — 2b1y + 4(ag — b2)y? 4 (2= 37)y0 (2.10)
28 3B%(B =)
By substituting a1, as, bs into I'y = 0, we find three relations indepen-
dently of ¢g, 3 and ¢4 with 5(8 — ) # 0 below:
3 —dy + B(6y —4) = 0,
2v(3y — 2)[=2 + (dag + 3by — 4bo)y? — 12(az — b2)Y?]
(672 — 8y +3)
2v(3y — 2)2(—=1 — 12y + 1870
34y —3)(672 — 8y +3)
L B = 49)*[(as = ba)(67" — 8y +3) — 3(2 = 37)*(1 — 21y + 4(az — b2)7*)]
43y = 2)3(6v> — 87+ 3)
Ly = 3)[d+3y + (“8ay — 126, + 8b2)v% + 36(az — b2)7°]
2(6v2 — 8y + 3)
(a4 —204)(3 — 49)* + (2 = 37)*[~1 + 4(a2 — 2b2)7’]
(2 —37)?
327%(—2 + 3v)1o?
3(—3+4v)2(6v%2 — 8y + 3)
L Ay0(2 = 37)[1 = 67(by — 205y + 2027)(67" — 87 + 3)]
3(3 —4v)(6v%2 — 8y +3)
dyo(—as +b4)(3 — 4v)
(2-37)
Solving (2.11) for 3, a4, by yields

8=

=0,

— 0. (2.11)

3 — 4y
4—67’

—6 + B[3 + 12y(=b1 + 3agy — 4ba7y)] + 472[3b1 + 2(az — 6azy + 6b27)]

a4 =

4p*(—2 + 3p)
o4 +128 4 (12 4+ 3(=3 + 4b1) )y — 6(3 + 2b1)?]
683(—2+38)(8—)
_7Pald(az — b2)(3y — 2) — 3b1]
B3(=2+3p)
Y20?(—2 4 3v)(—4 + 653 + 37)
3p(=2+3B)(B—7)
_ —1+3b1y (=B +7) + 29%[6az(8 — ) + b2(2 — 98 + 67)]
28%(—2+3p)

by
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Y20?(—2 + 37) (=4 + 68 + 37)
34(—2+38)(B —)
vo[—2B(1 + 2b17y) + (3 + 4b1)+?]
283(-2+3B8)(B—)
+'y3a[4(a2 —b2)(2 — 3v) + 3b4]
B3(=2+B)
By substituting a1, as, b3, 5, a4, by into I's = 0, we find five relations
independently of co, c3, ¢4 and c5 below:

3—12vy4 1072 =0, 3+~2(6 — 240) + 18730 + v(—9 + 87) = 0,
125(137609 + 57501v/6) 4 648(28357 + 11923v/6)az
—2250(4202 + 1753v/6)b1 — 648(28357 + 11923v/6)by = 0,

325(229308 4 91387V/6) — 72(945441 + 409574V/6)az
+90(647706 + 261659v/6)b1 + 72(655416 + 304849v/6)by = 0,
—25(36683358 4 14824337/6) + 72(2673882 4 1215523v/6)as

—540(627727 + 253603v/6)b; + 288(672867 + 227813v/6)by = 0. (2.13)
Solving (2.13) for v, 0, b1, ag, ba and simplifying, we obtain:

(3+8v6)  6—6
25 T 10

(2.12)

1 1 4
0 — 5(38+ 3*/6),1)1 _ (13946 \/6),192 _ _5(8+3\/6). (2.14)
48 36 36
After substituting (2.14) into (2.9), (2.10),(2.12), we further simplify:
(41 + 21V6) 31 +9V6 7(11 + 4/6)
ag=————7"—"a3=—175—bg=—"7""—",
12 12 36
6 6 118 — 23v/6 54 —19v/6
B = +\[,a4= \[,b4= ‘f. (2.15)
10 48 36

We finally substitute overall relations found so far into I'g to obtain
D = (163 + pacics + pscies + dacded + pscach + decacs + drcg), where
¢; are described in (2.1). This completes the proof. O

REMARK 2.2. From the first two equations of (2.13), the other pair
of values for o, is possible with ¢ = — (3_55\/6),7 = GJ%/E. In this case,

_ 6=V6

B = 273~ and all coefficients a;, b; can be obtained with V6 replaced by

—/6.
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3. Numerical experiments and concluding remarks

Many numerical analysis arising in engineering problems often re-

quires a large number of working-precision digits. Computing asymp-
totic error constants n = lim,,_ %
accuracy would encounter extreme calculations due to the indeterminate

form of a small-number division near the root «.

with several significant digits of

In the current numerical experiments, high-precision computing with
programming language Mathematica (Version 7) has been performed
with 100 working-precision digits, being large enough to minimize round-
off errors as well as to clearly observe the computed asymptotic error
constants requiring small-number divisions. In addition, the error bound
€ = % x 10780 was used. The values of initial guess zg were selected
close to a to guarantee the convergence of the iterative methods. Only
15 significant digits of approximated roots x, are displayed in Tables
1-3 due to the limited paper space, although 80 significant digits are
available. Numerical experiments have been carried out on a personal
computer equipped with an AMD 3.1 Ghz dual-core processor and 64-bit
Windows 7 operating system.

Iterative method (1.5) was identified by Y1 and has shown acceptable
performance when applied to a test function:

Fi(x) =sin(z+ 1) — 2z + 2, ~ 2.07076672714204.

DEFINITION 3.1. (Asymptotic Convergence Order) Assume that the as-
‘en‘
len—1]P

ymptotic error constant n = lim, . is known. Then we can define

log len /n|

the asymptotic convergence order p, = lim,, Toglea ]’

ACO.

being abbreviated by

Method Y1 in Table 1 clearly confirmed hexic-order convergence.
Table 1 lists iteration indexes n, approximate zeros x,, residual errors
| f(x)], errors |ey| = |, — | and computational asymptotic error con-

stants 7, = |- 8_7116| as well as the theoretical asymptotic error constant

n and computational asymptotic convergence order p, = igg‘lgi"ﬁll. The

values of 7, agree up to 7 significant digits with 7. As expected, the
computed asymptotic order of convergence well approaches 6.

Additional functions below are tested to verify the convergence be-
havior of proposed scheme (1.5):
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TABLE 1.

loglen_1]"

Convergence for sample test functions Fi(x)
with method Y1

f Zo |xn —al | JA CH PG Y1
f1 —0.31 | |z1 —«af | 2.39e-8* | 9.17e-10 3.67e-9 1.06e-9
|za —al | 3.95e-38 | 3.69e-54 6.54e-50 | 6.66e-54
|z3 — o] | 0.0e-100 | 0.0e-100 0.0e-100 | 0.0e-100
fa 1.2 |z1 —a] | 4.14e-5 | 3.76e-6 1.85e-5 | 3.02e-6
|xa — «f | 4.92e-21 | 3.78e-29 9.59e-27 | 6.06e-32
|3 — « | 0.0e-99 0.0e-99 0.0e-99 0.0e-99
f3 0.45 |z1 —a | 1.05e-7 8.84e-9 1.28e-8 1.90e-8
+0.85¢ | |x2 —«f | 1.99e-36 | 9.56e-50 1.36e-48 | 1.75e-47
|z3 —a] | 0.0e-100 | 0.0e-99 0.0e-99 0.0e-100
fa 0.1 |x1 — «af | 8.32e-7 5.00e-7 2.41e-6 3.87e-8
|xa — «f | 5.39e-32 | 1.01e-38 5.08e-34 | 1.91e-45
|x3s — a| | 0.0e-130 | 0.0e-137 0.0e-199 | 0.0e-144
75 || 084 | |z1 —a| | 25567 | 2.22¢9 | 8.79e9 | 5.24e9
|z — af | 2.87e-33 | 98.93¢-53 | 1.04e-48 | 4.14e-50
|xs — « | 0.0e-100 | 0.0e-100 0.0e-100 | 0.0e-100
fe 1.1 |z1 —a | 2.77e-6 | 1.78e-7 2.91e-7 | 3.91e-7
|2 —al | 1.12e-27 | 1.09e-40 7.98e-40 | 9.86e-39
|zz — | | 0.0e-99 | 0.0e-99 0.0e-99 | 0.0e-99
fr 0.3 |z1 — ] | 5.33e-10 | 1.08e-11 7.57e-12 | 4.84e-12
|z — «f | 3.31e-48 | 8.90e-68 6.59e-69 | 2.21e-70
|z3 — a] | 0.0e-100 | 0.0e-100 0.0e-100 | 0.0e-100

fi(z

)
fa(z)

* 2.39e-8 denotes 2.39 x10~8
TABLE 2. Comparison of |z, —a| for fi(x)— f7(x) among
listed methods

— . 3™ 2 1
=zcos Jx—log(z® — 7 —

9

=+2xcosz? —log(e+ 822 —4m) +1, a=

1y o =-1/3, 29 = —0.31,

uy
2

xro = 1.2,

n | Tn |F ()] len| P n Pn
019 0.339249 0.170767
1 | 2.07076671448853 | 2.527x10~% | 1.265x10~° | 0.0005102599209 | 0.0002274623374 | 5.54288
2 | 2.07076672714204 | 1.864x10~ > | 9.336x107°2 | 0.0002274623568 6.00000
3 | 2.07076672714204 | 0.0x10~%° 0.0x107%°

pn = & len/ul 1« 095y — .95 1 1.5

fa(@) =cos(@® —z+ 3) 430 — 5 —ivT, a =1 +i%T, 2o =045+ 0.85i, i = V1,
fa(z) =23 -2+ (z +2)log (e + 2%), a =0, xp = 0.1,

fs(x) = a® + 23 4+ €2 — 7, a ~ 0.878720933693359, xo = 0.84,
fo(x) =4cos?z +log(e? +922 —72) -3, a=7/3, o = 1.1,
fr(z) = 322 + ze' =% +sin (23 + 2) — 2, o ~ 0.323329877529435, ¢ = 0.3,
with logz (z € C) representing a principal analytic branch such that — 7 < Im(logz) < 7.
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f To Pn JA CH PG Y1

S -0.31 | p1 | 5.10138 | 6.02347 | 6.04048 | 5.90624
p2 | 5.00000 | 6.00000 | 6.00000 | 6.00000
f2 1.2 p1 | 4.70107 | 5.28779 | 5.57932 | 5.82983
p2 | 4.99994 | 5.99998 | 6.00003 | 6.00000
f3 0.45 | p1 | 5.02463 | 5.99413 | 6.01727 | 5.93624
+0.857 | p2 | 5.00000 | 6.00000 | 6.00000 | 6.00000
fa 0.1 p1 | 5.20917 | 6.11028 | 6.03205 | 7.16720
p2 | 5.00000 | 6.00000 | 6.00000 | 6.00000
fs 0.84 | p1 | 4.96969 | 6.03203 | 5.95361 | 6.07670
p2 | 5.00000 | 6.00000 | 6.00000 | 6.00000
f6 1.1 p1 | 5.00471 | 5.69594 | 5.21100 | 5.35830
p2 | 5.00000 | 6.00000 | 6.00000 | 6.00000
fr 0.3 p1 | 4.99851 | 5.93970 | 5.92075 | 5.85203
p2 | 5.00000 | 6.00000 | 6.00000 | 6.00000

TABLE 3. Comparison of computational ACO p, =
e fenllh for fi(z) — fr(x)

log Ien—l

For the purpose of comparison, we first identify methods (1.1), (1.3),
(1.4) by JA, CH, PG, respectively. Table 2 displays the values of
|z, — «f for methods JA, CH, PG, Y1. As a result of Table 2, pro-
posed method shows favorable or equivalent performance as compared
with existing methods JA, CH and PG. In Table 2, italicized numbers
indicates the least errors |z, — «|. When the same order of convergence
is known, one should note that the local convergence of |z, — «| behaves
differently depending on c¢;, namely f(z) and a. Table 3 well exhibits
computational convergence orders of the listed methods, among which
method Y1 clearly shows the convergence order of 6.

During the current numerical experiments, CH has shown best accu-
racy for f3, f5, while Y1 for fs, f4, fr. On the other hand, two methods
CH, Y1 have shown similar performance for f; and three methods CH,
PG, Y1 for fs. Computational accuracy is sensitively dependent on the
structures of the iterative methods, the sought zeros and the test func-
tions as well as good initial approximations. We should be aware that
no iterative method always shows best accuracy for all the test func-
tions. The corresponding efficiency index for the proposed method (1.5)
is found to be 61/4, which is same as those of listed sextic-order methods
but better than that of fourth-order Jarratt’s method [2]. A new devel-
opment of a family of higher-order iterative methods will be pursued in
the near future using the current approach employing three derivatives
and one function.



762

[
2l

B8l
4]
[5]
(6]

(7l

(8]

(9]

(10]
(1]
(12]
(13]
(14]
(15]

[16]

*

Young Tk Kim

References

L. V. Ahlfors, Complex Analysis, McGraw-Hill Book, Inc, 1979.

I. K. Argyros, D. Chen, and Q. Qian, The Jarratt method in Banach space
setting, J. Comput. Appl. Math. 51 (1994), 103-106.

W. Bi, Q. Wu, and H. Ren, A new family of eighth-order iterative methods for
solving nonlinear equations, Appl. Math. Comput. 214 (2009), no. 4, 236-245.
C. Chun, Certain improvements of Chebyshev-Halley methods with accelerated
fourth-order convergence, Appl. Math. Comput. 189 (2007), 597-601.

C. Chun, Some improvements of Jarratts method with sizth-order convergence,
Appl. Math. Comput. 190 (2007), 1432-1437.

L. Fanga, T. Chen, L. Tian, L. Sun, and B. Chen, A modified Newton-type
method with sizth-order convergence for solving nonlinear equations, Procedia
Engineering 15 (2011), 3124-3128.

Y. H. Geum and Y. I. Kim, A biparametric family of four-step sizteenth-order
root-finding methods with the optimal efficiency index, Appl. Math. Lett. 24
(2011), 1336-1342.

P. Jarratt, Multipoint iterative methods for solving certain equations, The Com-
puter Journal 8 (1966), no. 4, 398-400.

Y. I. Kim, A new two-step biparametric family of sixth-order iterative methods
free from second derivatives for solving nonlinear algebraic equations, Appl.
Math. Comput. 215 (2010), 3418-3424.

S. K. Parhi and D. K. Gupta, A sizth order method for nonlinear equations,
Appl. Math. Comput. 203 (2008), 50-55.

Y. Peng, H. Feng, Q. Li, and X. Zhang, A fourth-order derivative-free algorithm
for nonlinear equations, J. Comput. Appl. Math. 235 (2011), 2551-25509.

B. V. Shabat, Introduction to Complexr Analysis PART II, Functions of Several
Variables, American Mathematical Society (1992).

F. Soleymani, Regarding the accuracy of optimal eighth-order methods, Math.
Comput. Model. 53 (2011), 5-6, 1351-1357.

J. F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing
Company (1982).

X. Wang, J. Kou, and Y. Li, A variant of Jarratt method with sizth-order
convergence, Appl. Math. Comput. 204 (2008), 14-19.

S. Wolfram, The Mathematica Book(5th ed.), Wolfram Media, 2003.

Department of Applied Mathematics
Dankook University

Cheonan 330-714, Republic of Korea
E-mail: yikbell@dankook.ac.kr



