ON HENSTROCK INTEGRALS OF INTERVAL-VALUED FUNCTIONS ON TIME SCALES

Won Tae Oh* and Ju Han Yoon**

ABSTRACT. In this paper we introduce the interval-valued Henstock integral on time scales and investigate some properties of these integrals.

1. Introduction and preliminaries

The Henstock integral for real functions was first defined by Henstock [2] in 1963. The Henstock integral is more powerful and simpler than the Lebesgue, Wiener and Feynman integrals. The Henstock delta integral on time scales was introduced by Allan Peterson and Bevan Thompson [5] in 2006. In 2000, Congxin Wu and Zengtai Gong introduced the concept of the Henstock integral of interval-valued functions [6].

In this paper we introduce the concept of the Henstock delta integral of interval-valued function on time scales and investigate some properties of the integral.

A time scale T is a nonempty closed subset of real number \mathbb{R} with the subspace topology inherited from the standard topology of \mathbb{R} . For $t \in T$ we define the forward jump operator $\sigma(t) = \inf\{s \in T : s > t\}$ where $\inf \phi = \sup\{T\}$, while the backward jump operator $\rho(t) = \sup\{s \in T : s < t\}$ where $\sup \phi = \inf\{T\}$. If $\sigma(t) > t$, we say that t is right-scattered, while if $\rho(t) < t$, we say that t is left-scattered. If $\sigma(t) = t$, we say that t is right-dense, while if $\rho(t) = t$, we say that t is left-dense. The forward graininess function $\mu(t)$ of $t \in T$ is defined by $\mu(t) = \sigma(t) - t$, while the backward graininess function $\nu(t)$ of $t \in T$ is defined by $\nu(t) = t - \rho(t)$. For $a, b \in T$ we denote the closed interval $[a, b]_T = \{t \in T : a \leq t \leq b\}$.

Received October 17, 2014; Accepted November 10, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 26A39; secondary 26E70.

Key words and phrases: Henstock delta integral, time scales.

Correspondence should be addressed to Won Tae Oh, wntoh@chungbuk.ac.kr.

This work was supported by the research grant of the Chungbuk National University in 2012.

 $\delta = (\delta_L, \delta_R)$ is a Δ -gauge on $[a, b]_T$ if $\delta_L(t) > 0$ on $(a, b]_T$, $\delta_R(t) > 0$ on $(a, b]_T$, $\delta_L(a) \ge 0$, $\delta_R(b) \ge 0$ and $\delta_R(t) \ge \mu(t)$ for each $t \in [a, b]_T$.

A collection $P = \{([t_{i-1}, t_i], \xi_i) : 1 \leq i \leq n\}$ of tagged intervals is δ -fine Henstock partition of $[a, b]_T$ if $U_{i=1}^n[t_{i-1}, t_i] = [a, b]_T$, $[t_{i-1}, t_i]_T \subset [\xi_i - \delta_L(\xi_i), \xi_i + \delta_R(\xi_i)]$ and $\xi_i \in [t_{i-1}, t_i]_T$ for each $i = 1, 2, \dots, n$.

DEFINITION 1.1 ([5]). A function $f:[a,b] \longrightarrow \mathbb{R}$ is Henstock delta integrable (or H_{Δ} -integrable) on [a,b] if there exists a number A such that for each $\epsilon > 0$ there exists a Δ -gauge δ on [a,b] such that

$$\left| \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) - A \right| < \epsilon$$

for every δ -fine Henstock partition $P = \{([t_{i-1}, t_i], \xi_i) : 1 \le i \le n\}$ of [a, b]. The number A is called the Henstock delta integral of f on [a, b] and we write $A = (H_\Delta) \int_a^b f$.

DEFINITION 1.2. Let $I_{\mathbb{R}} = \{I = [I^-, I^+] \text{ is the closed bounded interval on the real } \mathbb{R}\}$, where $I^- = \min\{x : x \in I\}$, $I^+ = \max\{x : x \in I\}$. For $A, B, C \in I_{\mathbb{R}}$, we define $A \leq B$ iff $A^- \leq B^-$ and $A^+ \leq B^+$, A + B = C iff $A^- + B^- = C^-$ and $A^+ + B^+ = C^+$, and $AB = \{ab : a \in A, b \in B\}$, where $(AB)^- = \min(A^-B^-, A^-B^+, A^+B^-, A^+B^+)$ and $(AB)^+ = \max(A^-B^-, A^-B^+, A^+B^-, A^+B^+)$. Define $d(A, B) = \max(|A^- - B^-|, |A^+ - B^+|)$ as the distance between A and B.

DEFINITION 1.3 ([6]). An interval-valued function $F:[a,b] \longrightarrow I_{\mathbb{R}}$ is Henstock integrable to $I_0 \in I_{\mathbb{R}}$ on [a,b] if for every $\epsilon > 0$ there exists a gauge δ on [a,b] such that

$$d\left(\sum_{i=1}^{n} F(\xi_i)(t_i - t_{i-1}), I_0\right) < \epsilon$$

whenever $P = \{([t_{i-1}, t_i], \xi_i) : 1 \le i \le n\}$ of [a, b] is a δ -fine Henstock partition of [a, b]. We write $(IH) \int_a^b F(x) dx = I_0$ and $F \in IH[a, b]$.

2. The interval-valued Henstock delta integral on time scales

In this section, we will define the Henstock integral of interval-valued function on time scales and investigate some properties of the integral.

DEFINITION 2.1. An interval-valued function $F:[a,b]_T \longrightarrow I_{\mathbb{R}}$ is Henstock delta integrable to $I_0 \in I_{\mathbb{R}}$ on $[a,b]_T$ if for every $\epsilon > 0$ there exists a Δ -gauge δ on $[a,b]_T$ such that

$$d\left(\sum_{i=1}^{n} F(\xi_i)(t_i - t_{i-1}), I_0\right) < \epsilon$$

whenever $P = \{([t_{i-1}, t_i]_T, \xi_i) : 1 \le i \le n\}$ is a δ -fine Henstock partition of $[a, b]_T$. We write $(IH_\Delta) \int_a^b F(x) dx = I_0$ and $F \in IH_\Delta[a, b]_T$.

REMARK 2.2. It is clear, if $F(x) = F^{-}(x) = F^{+}(x)$ for all $x \in [a, b]$, then Definition 2.1 implies the real-valued Henstock integral on [a, b].

Remark 2.3. If $F \in IH_{\Delta}[a,b]_T$, then the integral is unique.

THEOREM 2.4. An interval-valued function $F:[a,b]_T \longrightarrow I_{\mathbb{R}}$ is Henstock delta integrable on $[a,b]_T$ if and only if $F^-, F^+ \in H_{\Delta}[a,b]_T$ and

$$(IH_{\Delta}) \int_{a}^{b} F(x) dx = \left[(H_{\Delta}) \int_{a}^{b} F^{-}(x) dx, (H_{\Delta}) \int_{a}^{b} F^{+}(x) dx \right],$$

where $F(x) = [F^{-}(x), F^{+}(x)].$

Proof. Let $F \in IH_{\Delta}[a,b]_T$. Then there exists an interval $I_0 = [I_0^-, I_0^+]$ with the property that for each $\epsilon > 0$ there exists a Δ -gauge δ on $[a,b]_T$ such that

$$d\left(\sum_{i=1}^{n} F(\xi_i)(t_i - t_{i-1}), I_0\right) < \epsilon$$

whenever $P = \{([t_{i-1}, t_i]_T, \xi_i) : 1 \le i \le n\}$ is a δ -fine Henstock partition of $[a, b]_T$.

Let $P = \{([t_{i-1}, t_i]_T, \xi_i) : 1 \le i \le n\}$ be a δ -fine Henstock partition of $[a, b]_T$. Since

$$d\left(\sum_{i=1}^{n} F(\xi_{i})(t_{i} - t_{i-1}), I_{0}\right)$$

$$= \max\left(\left|\sum_{i=1}^{n} F^{-}(\xi_{i})(t_{i} - t_{i-1}) - I_{0}^{-}\right|, \left|\sum_{i=1}^{n} F^{+}(\xi_{i})(t_{i} - t_{i-1}) - I_{0}^{+}\right|\right),$$

$$\left|\sum_{i=1}^{n} F^{-}(\xi_{i})(t_{i} - t_{i-1}) - I_{0}^{-}\right| < \epsilon, \left|\sum_{i=1}^{n} F^{+}(\xi_{i})(t_{i} - t_{i-1}) - I_{0}^{+}\right| < \epsilon.$$

Conversely, let $F^-, F^+ \in H_{\Delta}[a, b]_T$. then there exist $H_1, H_2 \in \mathbb{R}$ with the property that given Δ -gauge δ on $[a, b]_T$ such that

$$\left| \sum_{i=1}^{n} F^{-}(\xi_{i})(t_{i} - t_{i-1}) - H_{1} \right| < \epsilon, \left| \sum_{i=1}^{n} F^{+}(\xi_{i})(t_{i} - t_{i-1}) - H_{2} \right| < \epsilon.$$

whenever $P = \{([t_{i-1}, t_i]_T, \xi_i) : 1 \leq i \leq n\}$ is a δ -fine Henstock partition of $[a, b]_T$. We define $I_0 = [H_1, H_2]$, then if $P = \{([t_{i-1}, t_i]_T, \xi_i) : 1 \leq i \leq n\}$ is a δ -fine Henstock partition of $[a, b]_T$. We have

$$d\left(\sum_{i=1}^{n} F(\xi_i)(t_i - t_{i-1}), I_0\right) < \epsilon.$$

Hence $F:[a,b]_T\longrightarrow I_{\mathbb{R}}$ is Henstock delta integrable on $[a,b]_T.$

From Theorem 2.4 and the properties of Henstock delta integral ([6]), we can easily obtain the following theorems.

THEOREM 2.5. Let $F, G \in IH_{\Delta}[a, b]_T$ and $\beta, \gamma \in \mathbb{R}$. Then

- (1) $\beta F + \gamma G \in IH_{\Delta}[a, b]_T$ and $(IH_{\Delta}) \int_a^b (\beta F + \gamma G) dx = \beta (IH_{\Delta}) \int_a^b F dx + \gamma (IH_{\Delta}) \int_a^b G dx$
- (2) If $F(x) \leq G(x)$ a.e. in $[a,b]_T$, then $(IH_\Delta) \int_a^b F dx \leq (IH_\Delta) \int_a^b G dx$

THEOREM 2.6. Let $F \in IH_{\Delta}[a,c]_T$ and $F \in IH_{\Delta}[c,b]_T$. Then $F \in IH_{\Delta}[a,b]_T$ and

$$(IH_{\Delta}) \int_{a}^{b} F dx = (IH_{\Delta}) \int_{a}^{c} F dx + (IH_{\Delta}) \int_{c}^{b} F dx$$

THEOREM 2.7. Let $F, G \in IH_{\Delta}[a, b]_T$ and d(F, G) is Lebesgue delta integrable on $[a, b]_T$. Then

$$d\left((IH_{\Delta})\int_{a}^{b}Fdx,(IH_{\Delta})\int_{a}^{b}Gdx\right)\leq (L_{\Delta})\int_{a}^{b}d(F,G)dx$$

Proof. By definition of distance, we have

$$d\left((IH_{\Delta})\int_{a}^{b}Fdx,(IH_{\Delta})\int_{a}^{b}Gdx\right)$$

$$= \max\left(\left|\left((IH_{\Delta})\int_{a}^{b}Fdx\right)^{-} - \left((IH_{\Delta})\int_{a}^{b}Gdx\right)^{-}\right|,$$

$$\left|\left((IH_{\Delta})\int_{a}^{b}Fdx\right)^{+} - \left((IH_{\Delta})\int_{a}^{b}Gdx\right)^{+}\right|\right)$$

$$= \max\left(\left|(IH_{\Delta})\int_{a}^{b}(F^{-} - G^{-})dx\right|,\left|(IH_{\Delta})\int_{a}^{b}(F^{+} - G^{+})dx\right|\right)$$

$$= \max\left((L_{\Delta})\int_{a}^{b}\left|F^{-} - G^{-}\right|dx,(L_{\Delta})\int_{a}^{b}\left|F^{+} - G^{+}\right|dx\right)$$

$$\leq (L_{\Delta})\int_{a}^{b}d(F,G)dx.$$

3. The Henstock delta integral of fuzzy number valued functions

DEFINITION 3.1 ([1]). Let $\widetilde{A} \in F(\mathbb{R})$ be a fuzzy subset on \mathbb{R} . If for any $\lambda \in [0,1]$, $A_{\lambda} = [A_{\lambda}^{-}, A_{\lambda}^{+}]$ and $A_{1} \neq \emptyset$, where $A_{\lambda} = \{x : \widetilde{A}(x) \geq \lambda\}$, then \widetilde{A} is called a fuzzy number.

Let $\widetilde{\mathbb{R}}$ denote the set of all fuzzy numbers.

DEFINITION 3.2 ([3]). Let $\widetilde{A}, \widetilde{B} \in \widetilde{\mathbb{R}}$, we define $\widetilde{A} \leq \widetilde{B}$ iff $A_{\lambda} \leq B_{\lambda}$ for all $\lambda \in (0,1]$, $\widetilde{A} + \widetilde{B} = \widetilde{C}$ iff $A_{\lambda} + B_{\lambda} = C_{\lambda}$ for any $\lambda \in (0,1]$, $\widetilde{A} \cdot \widetilde{B} = \widetilde{D}$ iff $A_{\lambda} \cdot B_{\lambda} = D_{\lambda}$ for any $\lambda \in (0,1]$. For $D(\widetilde{A}, \widetilde{B}) = \sup_{\lambda \in [0,1]} d(A_{\lambda}, B_{\lambda})$ is called the distance between $\widetilde{A}, \widetilde{B}$.

LEMMA 3.3 ([1]). If a mapping $H:[0,1] \longrightarrow I_{\mathbb{R}}, \lambda \mapsto H(\lambda) = [m_{\lambda}, n_{\lambda}]$, satisfies $[m_{\lambda_1}, n_{\lambda_1}] \supset [m_{\lambda_2}, n_{\lambda_2}]$ when $\lambda_1 < \lambda_2$, then

$$\widetilde{A}:=\bigcup_{\lambda\in(0,1]}\lambda H(\lambda)\in\widetilde{\mathbb{R}}$$

and

$$A_{\lambda} = \bigcap_{n=1}^{\infty} H(\lambda_n),$$

where $\lambda_n = [1 - 1/(n+1)]\lambda$.

DEFINITION 3.4. Let $\widetilde{F}: [a,b]_T \longrightarrow \widetilde{\mathbb{R}}$. If the interval-valued function $F_{\lambda}(x) = [F_{\lambda}^-(x), F_{\lambda}^+(x)]$ is Henstock delta integrable on $[a,b]_T$ for any $\lambda \in (0,1]$, then we say that $\widetilde{F}(x)$ is Henstock delta integrable on $[a,b]_T$ and the integral is defined by Henstock delta integral is defined by

$$(FH_{\Delta}) \int_{a}^{b} \widetilde{F}(x) dx := \bigcup_{\lambda \in (0,1]} \lambda (IH_{\Delta}) \int_{a}^{b} F_{\lambda}(x) dx$$
$$= \bigcup_{\lambda \in (0,1]} \lambda \left[(H_{\Delta}) \int_{a}^{b} F_{\lambda}^{-} dx, (H_{\Delta}) \int_{a}^{b} F_{\lambda}^{+} dx \right].$$

We will write $\widetilde{F} \in FH_{\Delta}[a,b]_T$.

THEOREM 3.5. $\widetilde{F} \in FH_{\Delta}[a,b]_T$, then $(FH_{\Delta}) \int_a^b \widetilde{F}(x) dx \in \mathbb{R}$ and

$$\left[(FH_{\Delta}) \int_{a}^{b} \widetilde{F}(x) dx \right]_{\lambda} = \bigcap_{n=1}^{\infty} (IH_{\Delta}) \int_{a}^{b} F_{\lambda_{n}}(x) dx,$$

where $\lambda_n = [1 - 1/(n+1)]\lambda$.

Proof. Let $H:(0,1] \longrightarrow I_{\mathbb{R}}$ be defined by

$$H(\lambda) = \left[(H_{\Delta}) \int_{a}^{b} F_{\lambda}^{-}(x) dx, (H_{\Delta}) \int_{a}^{b} F_{\lambda}^{+}(x) dx \right].$$

Since $F_{\lambda}^{-}(x)$ and $F_{\lambda}^{+}(x)$ are increasing and decreasing on λ , respectively, therefore, when $0 < \lambda_{1} \leq \lambda_{2} \leq 1$ we have $F_{\lambda_{1}}^{-}(x) \leq F_{\lambda_{2}}^{-}(x)$, $F_{\lambda_{1}}^{+}(x) \geq F_{\lambda_{2}}^{+}(x)$ on $[a,b]_{T}$. Thus from Theorem 2.5, we have

$$\left[(H_{\Delta}) \int_{a}^{b} F_{\lambda_{1}}^{-}(x) dx, (H_{\Delta}) \int_{a}^{b} F_{\lambda_{1}}^{+}(x) dx \right]$$

$$\supset \left[(H_{\Delta}) \int_{a}^{b} F_{\lambda_{2}}^{-}(x) dx, (H_{\Delta}) \int_{a}^{b} F_{\lambda_{2}}^{+}(x) dx \right].$$

Using Theorem 2.5 and Lemma 3.3 we obtain

$$(IH_{\Delta}) \int_{a}^{b} \widetilde{F}(x) dx := \bigcup_{\lambda \in (0,1]} \lambda \left[(H_{\Delta}) \int_{a}^{b} F_{\lambda}^{-}(x) dx, (H_{\Delta}) \int_{a}^{b} F_{\lambda}^{+}(x) dx \right] \in \widetilde{\mathbb{R}}$$

and for all $\lambda \in (0,1]$,

$$\left[(FH_{\Delta}) \int_{a}^{b} \widetilde{F}(x) dx \right]_{\lambda} = \bigcap_{n=1}^{\infty} (IH_{\Delta}) \int_{a}^{b} F_{\lambda_{n}}(x) dx,$$

where
$$\lambda_n = [1 - 1/(n+1)]\lambda$$
.

Using Theorem 3.5 and the properties of (IH) integral, we can obtain the properties of (FH_{Δ}) integral. For examples, we get the linearity, monotonicity and interval additivity properties of (FH_{Δ}) integral.

References

- [1] L. Chengzhong, Extension of the integral of interval-valued function and integral of fuzzy-valued functions, Fuzzy Math. 3 (1983), 45-52.
- [2] R. Henstock, Theory of integration, Butterworths, London, 1963.
- [3] S. Nada, On integration of fuzzy mapping, Fuzzy Sets and Systems **32** (2000), 377-392.
- [4] J. M. Park, Y. K. Kim, D. H. Lee, J. H. Yoon, and J. T. Lim, Convergence Theorems for the Henstock delta integral on time scales, Journal of the ChungCheoug Math. Soc. 26 (2013), 880-884.
- [5] A. Peterson and B.Thompson, Henstock-Kurzweil Delta and Nabla Integral, J. Math. Anal. Appl. 323 (2006), 162-178.
- [6] C. Wu and Z. Gong, On Henstock integrals of interval-valued functions and fuzzy-valued functions, Fuzzy Set and System 115 (2000), 377-392.

*

Department of Mathematics Chungbuk National University Cheongju 361-763, Republic of Korea E-mail: wntoh@chungbuk.ac.kr

**

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: yoonjh@cbnu.ac.kr