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THE ANALOGUE OF WIENER SPACE WITH VALUES

IN ORLICZ SPACE

Kun Sik Ryu*

Abstract. Let M be an N -function satisfies the42-condition and
let OM be the Orlicz space associated with M . Let C(OM ) be the
space of all continuous functions defined on the interval [0, T ] with
values in OM .

In this note, we define the analogue of Wiener measure mM
φ on

C(OM ), establish the Wiener integration formulae for the cylinder
functions on C(OM ) and give some examples related to our formu-
lae.

1. Introduction

It is the starting point of the study for Brownian motion that Robert
Brown observed the motions of small particles in water through a mi-
croscope in 1827. Since then, Wiener had established a theory for the
reasonable probability measure mω associated with Brownian motion,
the one-dimensional Wiener measure, on the space C0[0, T ] of all real-
valued continuous functions on the closed bounded interval [0, T ] that
vanish at 0 in 1923[12]. In 1965, Gross presented the theory for the ab-
stract Wiener mesure ω on the infinite dimesional real seperable Banach
spcae B[2]. These are Gaussian measures on C0[0, T ] and B, respec-
tively. In 1972, Rajput introduced the theory of Gaussian measures on
Lp spaces, 1 ≤ p ≤ +∞[8], in 1977, Byczkowski studied the theory of
the Gaussian measures on Lp spaces, 0 ≤ p ≤ +∞[1], and in 1981,
Lawniczak researched the Gaussian measure on Orlicz space, which is a
kind of generalization of Lp space[7].

In 1973, Kuelbs and LePage suggested the existence of non-zero sta-
tionary increment Gaussian measure mB over paths in abstract Wiener
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space C0(B), the space of all B-valued continuous functions on [0, T ]
that vanish at 0[6], and in 1986, Jurlewicz presented the theory of the
Gaussian measures on C0(OM ), the space of all OM -valued continous
functions on [0, T ] that vanish at 0[4]. In 1992, the authour showed the
existence of mB, by the different way from Kuelbs and LePage’s method,
and found the Wiener integration formuala for it[9]. In 2002, the author
and Dr.Im defined the analogue of Wiener measure on C[0, T ], asso-
ciated with the Borel measure φ on R[11] and the author proved the
existence theorem of analogue of Wiener measure space over paths in
abstract Wiener space B, associated with the Borel measure on B[10].

In this article, we introduce the analogue of Wiener measure mM
φ on

C(OM ), assiciated with Borel mesure φ on OM , establish the Wiener
integration fomulae for cylinder functions on C(OM ) and give some ex-
amples of it.

2. Preliminaries: definitions, notations and properties

In this section, we introduce some definitions and notations which
are needed to understand this article.

In [5], we can find the fundamental properties of the Orlicz space.

(A) A real-valued continuous function M(u) is called an N -function if

it is even and satisties limu→∞
M(u)
u = +∞ and limu→0

M(u)
u = 0,

equivalent to it admits of the representation M(u) =
∫ |u|
0 p(t)dt

where the function p(t) is right-continuous for t ≥ 0, positive for
t > 0 and non-decreasaing which satisfies the condition p(0) = 0
and limt→+∞ p(t) = +∞.

(B) For right-continuous for t ≥ 0, positive for t > 0 and non-decreasing
function p, having the properties p(0) = 0 and limt→+∞ p(t) =
+∞, let q(s) = supp(t)≤s t for s ≥ 0. Then q is right-continuous

for s ≥ 0, positive for s > 0 and non-decreasing, q(0) = 0 and

lims→+∞ q(s) = +∞. Let N(v) =
∫ |v|
0 q(s)ds. Then N is an N -

function. Here, we say that M and N are mutually complimentary
N -functions

(C) We say that an N -function M satisties the 42-condition if there
are two constants u0 and k such that for u ≥ u0, M(2u) ≤ kM(u)
and we say that an N -function M satisfies the 4a-condition if

limu→+∞
M(u2)
M(u) < +∞.

Remark 2.1.
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(1) If an N -funtion M satisties the 42-condition then there are two
constants α and c with α > 1 and c > 0 such that M(u) ≤ c|u|α
for sufficiently large value of u.

(2) When α > 1 and a > 0, M(u) = a|u|α and M(u) = |u|α(ln |u|+ 1)

satisfy the 42-condition and M(u) = e|u| − |u| − 1 doesn’t satisfy
the 42-condition.

(D) For an N -function M and for a measurable function u : [0, T ]→ R,
let ρ(u,M) =

∫
[0,T ]M(u(t))dt. The space LM = {u|u : [0, T ] →

R, let ρ(u,M) is finite} is called the Orlicz class and let LM be
the space of all equivalent classes of functions in LM which are
equal almost everywhere with respect to the Lebesgue measure.

Remark 2.2.

(1) LM is linear if and only if M satisfies the 42-condition.
(2) If u is summable then u is in LM .

(E) Let M and N be mutually complimentary N -functions. We let
VM = {u ∈ LM |u : [0, T ]→ R is measurable such that for all v in
LN , (u, v) =

∫
[0,T ] u(t)v(t)dt < +∞ }.

Let OM be the space of all equivalent classes of functions in VM which are
equal almost everywhere with respect to the Lebesgue measure. From
Young’s inequality, we have LM ⊂ OM .

For u in OM , ||u||M = supρ(v,N)≤1(u, v) is called the Orlicz norm of

u and ||u||(M) = infk>0,ρ(u/k,M)≤1k is called the Luxemberg norm of u.

Remark 2.3.

(1) For u is OM , ||u||M ≤ 1 + ρ(u,M).
(2) If M satisfies the 42-condition then (OM , || · ||M ) is a separable

Banach space and LM = OM .
(3) For u in OM , ||u||(M) ≤ ||u||M ≤ 2||u||(M).
(4) Let M and N are mutually complimentary N -functions, let EM

be the closure of L∞ with respect to the topology generated be the
norm ||·||M and let V ? be the dual space of the normed vector space
V . Then (EM , || · ||(M))

? = (ON , || · ||N ) and (EM , || · ||M )? =

(ON , || · ||(N)).
(5) If M satisties the 42-condition then EM = LM = OM . So, if M

satisfies the 42-condition then (OM , || · ||M ) is reflexive.
(6) Since L∞ ⊂ L2 ⊂ OM , the closure of L2 with respect to the

topology generated by the norm || · ||M is OM .
(7) Let M and N are mutually complimentary N -functions. For u

is OM and for v in ON , |(u, v)| ≤ ρ(u,M) + ρ(v,N), |(u, v)| ≤
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||u||M ||v||(N), and |(u, v)| ≤ ||u||(M)||v||N . Hence for u in L2,

||u||2 ≤ ||u||M ≤ 2||u||(M).

(8) M satisfies the 4a-condition if and of for u in OM , u2 belongs to
OM [3].

(9) If M satisfies the 42-condition and the 4a-condition, then for for
u, v in OM , there is a constant c such the ||uv||M ≤ c||u||M ||v||M .

(F) A subset I of L2 of the form I = {u ∈ L2 | P (u) ∈ F} is called a
cylinder set where P is a finite demensional orthogonal projection
on L2 and F is a Borel subset of P (L2). The Gaussian measure
on L2 is a set function of all cylinder sets defined as follows: If

I = {u ∈ L2 | P (u) ∈ F} then µ(I) = (2π)−n/2
∫
F e
−||t||2/2dt where

n is a dimension of P (L2). Then µ is not σ-additive.

Suppose {en | n ∈ N} is and orthonormal basis of L2. Let µ1,2,··· ,n(F ) =
µ{u ∈ L2 | ((u, e1), (u, e2), · · · , (u, en)) ∈ F}. Then {µ1,2,··· ,n} is a con-
sistence family of probability measures. By Kolomogorov’s theorem,
there is a probability measure space (Ω, ω) and random variables ξn :
Ω → R (n ∈ N) such that ω({z ∈ Ω|((ξ1(z), ξ2(z), · · · , ξn(z)) ∈ F})
= µ1,2,··· ,n(F ). Without loss of generality, we can put Ω = OM because
OM ⊂ L0, the space of all measurable functions on [0, T ] with the topol-
ogy of convergence in measure.

Remark 2.4.

(1) OM is a closed subset of L0.
(2) For non-zero v in ON and for a real number a, ω({u ∈ OM | (u, v) <

a})= 1√
2π‖v‖(N)

∫ a
−∞ e

−t2/(2‖v‖(N))dt.

(G) For two Borel measures m1 and m2, we let m1 ∗ m2(E + F ) =
m1 ×m2(E × F ) for E, F in B(OM ), the set of all Borel subsets

of OM . For λ > 0 and for B in B(OM ), let ωλ(B) = ω(λ−1/2B).
Then for two positive real numbers s and t, ωλ∗ω = ω√s2+t2 and
ωλ∗δ0 = ωλ, where δ0 is the Dirac measure centered at 0.

3. The analogue of Wiener space with values in Orlicz space

Throughout this section, let M be an N -function which satisfies the
42-condition, let M and N be mutually complimentary N -functions, let
C(OM ) be the space of all continuous function defined on the interval
[0, T ] with values in OM in the norm ‖y‖C(OM ) = sup0≤t≤T ‖y(t)‖M and

let φ be a probability Borel measure on OM .
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Let ~t = (t0, t1, t2, · · ·, tn) be given with 0 = t0 < t1 < t2 < · · · < tn ≤
T and let T~t : On+1

M → On+1
M be a function given by

T~t((t0, t1, · · ·, tn)) = (x0, x0 +
√
t1x1, · · ·, x0 +

n∑
j=1

√
tj − tj−1xj).

we define a set function vφ~t on B(On+1
M ) given by

vφ~t =

∫
OM

[

∫
On+1
M

(XB ◦ T~t)((x0, x1, · · ·, xn))d(
n∏
j=1

ω)(x1, x2, · · ·, xn)]dφ(x0)

,where XB is a characteristic function associated with B. Then vφ~t
is a Borel measure on (On+1

M ,B(On+1
M )). Let J~t : C(OM ) → On+1

M
be a function with J~t(y)=((y(t0), y(t1), · · ·, y(tn))). For Borel subset

B0, B1, · · ·, Bn in B(OM ), the subset J−1~t
(
∏n
j=0Bj) of C(OM ) is called

an interval. Let J be the set all such intervals. Then by (G) J is a
semi-algebra. We define a set functionMφ on J byMφ(J−1~t

(
∏n
j=0Bj)) =

vφ~t (
∏n
j=0Bj). Then by (G) Mφ is well-defined on J , B(C(OM )) coincides

with the smallest σ-algebra genrated by J and there exists a unique mea-
sure mM

φ on (C(OM ),B(C(OM ))) such that mM
φ (I) = Mφ(I) for all I in

J . This measure space (C(OM ),B(C(OM )),mM
φ ) is called the analogue

of Wiener measure space with values in Orlicz space.

From the change of variable theorem, we have the following two the-
orems.

Theorem 3.1. (THE WIENER INTEGRATION FORMULA 1)

If f : On+1
M → R is Borel measurable and F : C(OM )→ R is a func-

tion with F (y) = f(y(t0), y(t1), · · ·, y(tn)) then the following equality
holds∫

C(OM )
F (y)dmM

φ (y) =

∫
C(OM )

f((y(t0), y(t1), · · ·, y(tn))dmM
φ (y)

=̇

∫
OM

[

∫
On+1
M

(f ◦ T~t)((x0, x1, · · ·, xn))d(

n∏
j=1

ω)(x1, x2, · · ·, xn)]dφ(x0)

where =̇ means that if one side exists then both sides exit and the two
values are equal.

Theorem 3.2. (THE WIENER INTEGRATION FORMULA 2)
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If f : Rn+1 → R is Borel measurable and v is a non-zero element in
ON , ∫

C(OM )
f((y(t0), y(t1), · · ·, y(tn))dmM

φ (y)

=̇{(2π)n‖v‖(N)

n∏
j=1

√
tj − tj−1}−1/2

∫
R

[

∫
Rn+1

f(s0, s1, · · · , sn)

e−(1/2‖v‖(N))
∑n
j=1 (sj−sj−1)

2/(tj−tj−1)dsndsn−1· · ·ds1]dφ(s0)

where =̇ means that if one side exists, then both sides exist and the two
values are equal.

Example 3.3.

(1) Suppose
∫
OM
||u||Mdφ(u) is finite. Then from Theorem 3.1, for

0 ≤ t ≤ T , F (y) = y(t) is mM
φ -Bochner integrable on C(OM ) and

(BO)−
∫
C(O)M

y(t)dmM
φ (y) = (BO)−

∫
OM

udφ(u).

(2) For non-zero v is ON , for real number ξ and for 0 ≤ t ≤ T ,∫
C(OM )

eiξ(y(t),v)dmM
φ (y) = ei||v||(n)ξ

2/2
∫
OM

eiξ(u,v)dφ(u)

(3) Suppose M satisfies the 4a-codition, 0 < t1 < t2 ≤ T and∫
OM
||u||2Mdφ(u) is finite. From Fernique’s Theorem, we obtain∫

OM
||u||Mdω(u) and

∫
OM
||u||2Mdω(u) are all finite. Hence, u, u2

are all ω- and φ-Bochner integrable. Then for some positive real
number c,∫

C(OM )
||y(t1)y(t2)||MdmM

φ (y) =

∫
C(OM )

c||y(t1)|| ||y(t2)||MdmM
φ (y)

≤ c{
∫
OM

||u||Mdφ(u) + (2
√
t1 +

√
t2 − t1)

∫
OM

||u||Mdω(u)

+ t1

∫
OM

||u||2Mdω(u) +
√
t1
√
t2 − t1(

∫
OM

||u||Mdω(u))2}

is finite. So, the Bochner Theorem, y(t1)y(t2) is mM
φ -Bochner

integrable on C(OM ). Hence,
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(BO)−
∫
C(OM )

y(t1)y(t2)dm
M
φ (y)

= (BO)−
∫
OM

u2dφ(u) + t1(BO)−
∫
OM

u2dω(u).
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