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THE ANALOGUE OF WIENER SPACE WITH VALUES
IN ORLICZ SPACE

Kun Sik Ryu*

ABSTRACT. Let M be an N-function satisfies the A\s-condition and
let Oa be the Orlicz space associated with M. Let C'(Oa) be the
space of all continuous functions defined on the interval [0, 7] with
values in Oy;.

In this note, we define the analogue of Wiener measure mé\s/[ on
C(Owm), establish the Wiener integration formulae for the cylinder
functions on C(Oxs) and give some examples related to our formu-
lae.

1. Introduction

It is the starting point of the study for Brownian motion that Robert
Brown observed the motions of small particles in water through a mi-
croscope in 1827. Since then, Wiener had established a theory for the
reasonable probability measure m,, associated with Brownian motion,
the one-dimensional Wiener measure, on the space Cp[0,T] of all real-
valued continuous functions on the closed bounded interval [0,T] that
vanish at 0 in 1923[12]. In 1965, Gross presented the theory for the ab-
stract Wiener mesure w on the infinite dimesional real seperable Banach
spcae B[2]. These are Gaussian measures on Cy[0,7] and B, respec-
tively. In 1972, Rajput introduced the theory of Gaussian measures on
L, spaces, 1 < p < +00[8], in 1977, Byczkowski studied the theory of
the Gaussian measures on L, spaces, 0 < p < 4o0o[l], and in 1981,
Lawniczak researched the Gaussian measure on Orlicz space, which is a
kind of generalization of L, space[T7].

In 1973, Kuelbs and LePage suggested the existence of non-zero sta-
tionary increment Gaussian measure mp over paths in abstract Wiener
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space Cy(B), the space of all B-valued continuous functions on [0, 7]
that vanish at 0[6], and in 1986, Jurlewicz presented the theory of the
Gaussian measures on Cy(Oys), the space of all Ops-valued continous
functions on [0, 7] that vanish at 0[4]. In 1992, the authour showed the
existence of mp, by the different way from Kuelbs and LePage’s method,
and found the Wiener integration formuala for it[9]. In 2002, the author
and Dr.Im defined the analogue of Wiener measure on C[0,77], asso-
ciated with the Borel measure ¢ on R[11] and the author proved the
existence theorem of analogue of Wiener measure space over paths in
abstract Wiener space B, associated with the Borel measure on B[10].

In this article, we introduce the analogue of Wiener measure mé/[ on
C(Oypy), assiciated with Borel mesure ¢ on Oy, establish the Wiener
integration fomulae for cylinder functions on C(O);) and give some ex-
amples of it.

2. Preliminaries: definitions, notations and properties

In this section, we introduce some definitions and notations which
are needed to understand this article.
In [5], we can find the fundamental properties of the Orlicz space.

(A) A real-valued continuous function M (u) is called an N-function if

M(uw) M@ _ g

it is even and satisties lim,_, o = 400 and lim,_,q

equivalent to it admits of the representation M (u) = 0'“' p(t)dt
where the function p(t) is right-continuous for ¢t > 0, positive for
t > 0 and non-decreasaing which satisfies the condition p(0) = 0
and limy_, o p(t) = 4o00.

(B) For right-continuous for ¢ > 0, positive for ¢ > 0 and non-decreasing
function p, having the properties p(0) = 0 and limy_, o p(t) =
+00, let q(s) = suppy<,t for s > 0. Then ¢ is right-continuous
for s > 0, positive for s > 0 and non-decreasing, ¢(0) = 0 and
limg_s 100 g(s) = +o0. Let N(v) = O‘U‘ q(s)ds. Then N is an N-
function. Here, we say that M and N are mutually complimentary
N-functions

(C) We say that an N-function M satisties the Ag-condition if there
are two constants ug and k such that for u > ug, M (2u) < kM (u)
and we say that an N-function M satisfies the A,-condition if

- 2
hmu*H,oo W < +00.

REMARK 2.1.
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(1) If an N-funtion M satisties the /Ag-condition then there are two
constants « and ¢ with o > 1 and ¢ > 0 such that M (u) < c|u|®
for sufficiently large value of u.

(2) When a > 1 and a > 0, M(u) = alu|* and M (u) = |u|*(In|u| + 1)
satisfy the Ng-condition and M(u) = el¥l — |u| — 1 doesn’t satisfy
the Ay-condition.

(D) For an N-function M and for a measurable function u : [0, 7] — R,
let p(u, M) f[o 7 ))dt. The space Ly = {ulu : [0,T] —
R, let p(u, M) is fzmte} is called the Orlicz class and let Ljs be
the space of all equivalent classes of functions in L£j; which are
equal almost everywhere with respect to the Lebesgue measure.

REMARK 2.2.

(1) Ly is linear if and only if M satisfies the Ay-condition.
(2) If u is summable then u is in Lyy.
(E) Let M and N be mutually complimentary N-functions. We let
Vi ={u € Lylu:[0,T] — Ris measurable such that for all vin
Ly, (u,v) = f[O,T] u(t)v(t)dt < +o0 }.
Let Oy be the space of all equivalent classes of functions in Vy; which are
equal almost everywhere with respect to the Lebesgue measure. From
Young’s inequality, we have Lys C Ojy.
For w in Oy, [|ul|ap = sup,(y,ny<1(u, v) is called the Orlicz norm of
u and Hu||(M) = infy0 p(u/k,m)<1k is called the Luxemberg norm of u.

REMARK 2.3.

(1) For w is Opp, ||ullar < 14 p(u, M).

(2) If M satisfies the Ag-condition then (Oay, || - ||ar) is a separable
Banach space and Ly = Oyy.

(3) For u in On, llullan) < Ilullar < 21lull -

(4) Let M and N are mutually complimentary N-functions, let Eyy
be the closure of L, with respect to the topology generated be the
norm ||-||as and let V* be the dual space of the normed vector space
V. Then (Expl| - llun)* = (O Il- ) and (Ear, |- [lar)* =

(On; |- Ml vy)-
(5) If M satisties the Ay-condition then Epnr = Ly = Opy. So, if M
satisfies the /Aa-condition then (O, || - ||ar) is reflexive.

(6) Since Lo, C Lo C Oy, the closure of Ly with respect to the
topology generated by the norm || - ||ar is Opy.

(7) Let M and N are mutually complimentary N-functions. For u
is Oy and for v in Oy, |(u,v)| < p(u, M) + p(v,N), |(u,v)| <
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[lullarloll vy, and [(u, v)] < [|ullppl[olly. Hence for u in Ly,
[lullz < ffullar < 2[lullag)-

(8) M satisfies the /\-condition if and of for u in Oy, u? belongs to
On[3].

(9) If M satisfies the Ag-condition and the A,-condition, then for for
u, v in Oyy, there is a constant ¢ such the ||uv||pr < c||ul|ar]|v]|ar-

(F) A subset I of Ly of the form I = {u € Ly | P(u) € F} is called a
cylinder set where P is a finite demensional orthogonal projection
on Ly and F is a Borel subset of P(Ls). The Gaussian measure
on Lo is a set function of all cylinder sets defined as follows: If
I={ueLy| Plu) € F} then pu(I) = (27r)_”/2fF e~ t1%/2 g4 where
n is a dimension of P(Lg). Then p is not o-additive.

Suppose {e,, | n € N} is and orthonormal basis of L. Let i1 2.... n(F) =
p{u € Ly | ((u,e1), (u,e2), -+, (u,en)) € F}. Then {p12... n} is a con-
sistence family of probability measures. By Kolomogorov’s theorem,
there is a probability measure space (2,w) and random variables &, :
Q — R (n € N) such that w({z € Q|((&1(2),&(2), -+ ,&u(2)) € F})
= f12,... n(F). Without loss of generality, we can put = O because
O C Ly, the space of all measurable functions on [0, 7] with the topol-
ogy of convergence in measure.

REMARK 2.4.

(1) Oy is a closed subset of Ly.
(2) For non-zerowv in Oy and for a real number a, w({u € Opy| (u,v) <

—_ 1 o —t?/lw)
a}l) o fiooe dt.

(G) For two Borel measures m; and ma, we let my *x mo(E + F) =
m1 X ma(E x F) for E, F in B(Oy), the set of all Borel subsets
of Opr. For A > 0 and for B in B(Oyy), let wy(B) = w(A"'/2B).
Then for two positive real numbers s and ¢, wy*w = w Ve and
wyxdy = wy, where dy is the Dirac measure centered at 0.

3. The analogue of Wiener space with values in Orlicz space

Throughout this section, let M be an N-function which satisfies the
Asg-condition, let M and N be mutually complimentary N-functions, let
C(Oypr) be the space of all continuous function defined on the interval
[0, T] with values in Oy in the norm HyHC(OM) = supg<;<7|y(t) |, and
let ¢ be a probability Borel measure on Oyy.
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Let t = (to,t1,te, -+ ty) be given with 0 =tg < t; <to < --- <t, <
T and let T} : Oﬁl — O]T\L/[+1 be a function given by

n
Ti{(to, t1, -+ tn)) = (w0, @0 + V121, -+, 0 + Z\/tj —tj-17j).
i=1

we define a set function v? on B(O}}1) given by

vﬁ = /OM /o"“ (XpoTy)( (xo,l‘l,..-,In))d(jl_[lw)(a:17$27...7xn)]d¢(x0)

,where Xp is a characteristic function associated with B. Then v?

is a Borel measure on (07!, B(OYfY)). Let J; : C(Op) — OFf!
be a function with Jxy)=((y(to),y(t1), - y(tn))). For Borel subset
By, Bi, -+, By in B(Op), the subset J= ' (Ij_o Bj) of C(On) is called
an interval. Let J be the set all such intervals. Then by (G) J is a
semi-algebra. We define a set function My on J by M¢(Jt?1 (I[j=0Bj)) =
U?(H?:()Bj)- Then by (G) M, is well-defined on J, B(C(Oxr)) coincides
with the smallest o-algebra genrated by J and there exists a unique mea-
sure mg[ on (C(On), B(C(Oypr))) such that mg[(I) = My(I) for all I in
J . This measure space (C(Ox), B(C(Opn)), mé/[) is called the analogue
of Wiener measure space with values in Orlicz space.

From the change of variable theorem, we have the following two the-
orems.

THEOREM 3.1. (THE WIENER INTEGRATION FORMULA 1)
If f : O% — R is Borel measurable and F : C(Oyr) — R is a func-

tion with F(y) = f(y(to),y(t1), -, y(tn)) then the following equality
holds

/C<0M Fyimg @) = /<oM>f((y(t°)’y(t1)’""y(tn))dmf(y)

/OM /()”+1 f o Tp)( xo’xlv""x”))d(jl_llw)(xl’x%"‘axn)]d¢(ﬂf0)

where = means that if one side exists then both sides exit and the two
values are equal.

THEOREM 3.2. (THE WIENER INTEGRATION FORMULA 2)
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If f : R"*!1 — R is Borel measurable and v is a non-zero element in
ON7

/ F((to)s wtr). - y(ta))dm™ ()
C(On)

{2 ol [TVG =) AT

e~ (1200l () 251 (81781*1)2/(%%3’1)dsndsn,l' --ds1]de(so)

where = means that if one side exists, then both sides exist and the two
values are equal.

ExaMPLE 3.3.

(1) Suppose [ [lullydé(u) is finite. Then from Theorem 3.1, for
0<t<T, F(y)=y(t) is mé/[—Bochner integrable on C'(Oyr) and

M = — u u).
(Bo) - /C o, 0 () = (50) /O dé(u)

M

(2) For non-zero v is Oy, for real number £ and for 0 <t < T,

] il|v 2 i€ (u,v
/ OO g () = V€2 / (HE2) 43 (1)
C(On) Onr

(3) Suppose M satisfies the /A,-codition, 0 < t; < ty < T and
fOMHuHQMdgb(u) is finite. From Fernique’s Theorem, we obtain
Jo, Nlullardw(u) and [, ||lu|[3;dw(u) are all finite. Hence, u, u®

are all w- and ¢-Bochner integrable. Then for some positive real

number c,

/C(OM)Iy(h)y(tz)HMdm% (v) = /C o el e ldm )
éc{/o |u||Md¢<u>+<2\/a+F2—t1>/o [ul|rdeo()
Tt /O [l 2 o () + vy = / ullardeo(u))?)

Onm

is finite. So, the Bochner Theorem, y(t1)y(t2) is mé/[—Bochner
integrable on C(Oyr). Hence,
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*
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(Bo) - /C o V)Y W)

= (Bo) — /O u?de(u) + t1(Bo) — /O w?dw(u).

M
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