JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 27, No. 4, November 2014 http://dx.doi.org/10.14403/jcms.2014.27.4.643

ON (f,g)-DERIVATIONS OF INCLINE ALGEBRAS

Kyung Ho Kim*

ABSTRACT. In this paper, we introduce the concept of a (f,g)derivation which is a generalization of f-derivation in an incline algebra and give some properties of incline algebras. Also, we consider the *kerd* and *k*-ideal with respect to (f,g)-derivation in an incline algebra.

1. Introduction

The concept of incline algebra was introduced by Cao and later it was developed by Cao, et.al, in [3]. Recently, a survey on incline algebra was made by Kim and Roush [4, 5]. Incline algebra is a generalization of both Boolean and fuzzy algebra and it is a special type of semiring. It has both a semiring structure and a poset structure. It can also be used to represent automata and other mathematical systems, to study inequalities for non-negative matrices of polynomials. In this paper, we introduce the concept of a (f, g)-derivation which is a generalization of f-derivation in an incline algebra and give some properties of incline algebras. Also, we characterize the *kerd* and *k*-ideal with respect to (f, g)-derivation in an incline algebra.

2. Incline algebras

An *incline* (algebra) is a set K with two binary operations denoted by "+" and "*" satisfying the following axioms: for all $x, y, z \in K$, (K1) x + y = y + x, (K2) x + (y + z) = (x + y) + z,

Received August 25, 2014; Revised September 24, 2014; Accepted October 06, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 06F35, 03G25, 08A30.

Key words and phrases: incline algebra, (f, g)-derivation, isotone, k-ideal, Kerd. The research was supported by a grant from the Academic Research Program of Korea National University of Transportation in 2014.

Kyung Ho Kim

(K3) x * (y * z) = (x * y) * z, (K4) x * (y + z) = (x * y) + (x * z), (K5) (y + z) * x = (y * x) + (z * x), (K6) x + x = x, (K7) x + (x * y) = x, (K8) y + (x * y) = y.

Furthermore, an incline algebra K is said to be *commutative* if x * y = y * x for all $x, y \in K$. Every distributive lattice is an incline algebra. An incline algebra is a distributive lattice if and only if x * x = x for all $x \in K$. Note that $x \leq y \Leftrightarrow x + y = y$ for all $x, y \in K$. It is easy to see that " \leq " is a partial order on K and that for any $x, y \in K$, the element x + y is the least upper bound of $\{x, y\}$. We say that \leq is induced by operation +.

In an incline algebra K, the following properties hold.

- (K9) $x * y \leq x$ and $x * y \leq y$ for all $x, y \in K$,
- (K10) $x \leq x + y$ and $y \leq x + y$ for all $x, y \in K$,
- (K11) $y \le z$ implies $x * y \le x * z$ and $y * x \le z * x$, for all $x, y, z \in K$,
- (K12) If $x \leq y$ and $a \leq b$, then $x + a \leq y + b$, and $x * a \leq y * b$ for all $a, b, x, y \in K$.

A subincline of an incline algebra K is a non-empty subset M of K which is closed under the addition and multiplication. A subincline Mis called an *ideal* if $x \in M$ and $y \leq x$ then $y \in M$. An element "0" in an incline algebra K is a zero element if x+0 = x = 0+x and x*0 = 0 = 0*xfor any $x \in K$. An non-zero element "1" is called a *multiplicative identity* if x * 1 = 1 * x = x for any $x \in K$. A non-zero element $a \in K$ is called a left (resp. right) zero divisor if there exists a non-zero $b \in K$ such hat a * b = 0 (resp. b * a = 0) A zero divisor is an element of K which is both a left zero divisor and a right zero divisor. An incline algebra Kwith multiplicative identity 1 and zero element 0 is called an *integral* incline if it has no zero divisors. By a homomorphism of inclines, we mean a mapping f from an incline algebra K into an incline algebra L such that f(x+y) = f(x) + f(y) and f(x*y) = f(x)*f(y) for all $x, y \in K$. Let K be an incline algebra. An element $a \in K$ is called a additively left cancellative if for all $b, c \in K$, $a + b = a + c \Rightarrow b = c$. An element $a \in K$ is called a *additively right cancellative* if for all $b, c \in K$, $b + a = c + a \Rightarrow b = c$. It is said to be additively cancellative if it is both left and right cancellative. If every element of K is additively left cancellative, it is called *additively left cancellative*. If every element of Kis additively right cancellative, it is called *additively right cancellative*.

3. (f,g)-derivations of incline algebras

Through this article, K stands for an incline algebra with a zero element 0 unless otherwise mentioned.

DEFINITION 3.1. Let K be an incline algebra and let $f, g : K \to K$ be two endomorphisms on K. A self-map d of an incline algebra K is called an (f, g)-derivation if it satisfies

d(x * y) = d(x) * f(y) + g(x) * d(y) and d(x + y) = d(x) + d(y)

for every $x, y \in K$.

EXAMPLE 3.2. Let $K = \{0, a, b, 1\}$ be a set in which "+" and "*" is defined by

+	0	a	b	1				a		
		a			_	0	0	0	0	0
a	a	a	b	1		a	0	a	a	a
b	b	b	b	1		b	0	a	b	b
1	1	1	1	1		1	0	a	b	1

Then it is easy to check that (K, +, *) is an incline algebra. Define a map $d: K \to K$ by

$$d(x) = \begin{cases} a & \text{if } x = a, b, 1\\ 0 & \text{if } x = 0 \end{cases}$$

and define two endomorphisms $f,g:X\to X$

$$f(x) = \begin{cases} 0 & \text{if } x = 0, a \\ b & \text{if } x = b, 1 \end{cases}$$
$$g(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x = 1, a, b \end{cases}$$

Then it is easily checked that d is a (f, g)-derivation of K.

PROPOSITION 3.3. Let d be a (f,g)-derivation of K. If f(0) = g(0) = 0, we have d(0) = 0.

Proof. Let d be a (f,g)-derivation of K. Then d(0) = d(0 * 0) = (d(0) * f(0)) + (g(0) * d(0)) = (d(0) * 0) + (0 * d(0)) = 0 + 0 = 0. Kyung Ho Kim

This completes the proof.

646

PROPOSITION 3.4. Let d be a (f,g)-derivation of a commutative incline algebra K. If $f(x) \leq g(x)$ for all $x \in K$, then $d(x) \leq g(x)$ for all $x \in K$.

Proof. Let $f(x) \le g(x)$ for all $x \in K$. Then we get f(x) + g(x) = g(x). Thus,

$$d(x) = d(x * x) = (d(x) * f(x)) + (g(x) * d(x))$$

= $(d(x) * f(x)) + (d(x) * g(x))$
= $d(x) * (f(x) + g(x))$
= $d(x) * g(x) \le g(x)$

by (K9). This completes the proof.

PROPOSITION 3.5. Let d be a (f,g)-derivation of K and let $x, y \in K$ be such that $x \leq y$. Then $d(x * y) \leq g(x) + f(y)$.

Proof. Let d be a (f,g)-derivation of K and let $x \leq y$. Then we have $d(x) * f(y) \leq f(y)$ and $g(x) * d(y) \leq g(x)$ from (K9). Hence, by using (K12), we get $d(x * y) = (d(x) * f(y)) + (g(x) * d(y)) \leq g(x) + f(y)$. This completes the proof.

PROPOSITION 3.6. Let d be a (f,g)-derivation of K. Then we have $d(x * y) \leq d(x + y)$ for all $x, y \in K$.

Proof. Let $x, y \in K$. By using (K9), we get $d(x) * f(y) \le d(x)$ and $g(x) * d(y) \le d(y)$. Thus we get

$$d(x * y) = d(x) * f(y) + g(x) * d(y) \le d(x) + d(y) = d(x + y).$$

THEOREM 3.7. Let f and g be maps on K such that $g(x) \leq f(x)$ for all $x \in K$. If d = f and f, g are two endomorphisms on K, then d is a (f, g)-derivation of K.

Proof. Let f and g be maps on K such that $g(x) \leq f(x)$ for all $x \in K$. Then we have g(x) + f(x) = f(x) for all $x \in K$. Hence we get

$$\begin{aligned} d(x*y) &= f(x*y) = f(x)*f(y) + f(x)*f(y) \\ &= f(x)*f(y) + (g(x) + f(x))*f(y) \\ &= f(x)*f(y) + g(x)*f(y) + f(x)*f(y) \\ &= f(x)*f(y) + g(x)*f(y) \\ &= d(x)*f(y) + g(x)*d(y). \end{aligned}$$

Also, we have d(x + y) = f(x + y) = f(x) + f(y) = d(x) + d(y) for all $x, y \in K$. This completes the proof.

PROPOSITION 3.8. Let d be a (f, g)-derivation of K. If $d \circ d = d$ and $f \circ d = f$, then d(x * d(x)) = d(x) for all $x \in K$.

Proof. Let d be a (f, g)-derivation of a distributive lattice K and $d \circ d = d$ and $f \circ d = f$. Then

$$d(x * d(x)) = d(x) * f(d(x)) + g(x) * d(d(x))$$

= d(x) * f(x) + g(x) * d(x)
= d(x * x) = d(x)

for all $x \in X$.

DEFINITION 3.9. Let K be an incline algebra. A mapping f is isotone if $x \leq y$ implies $f(x) \leq f(y)$ for all $x, y \in K$.

PROPOSITION 3.10. Let K be an incline algebra and let d be a (f, g)-derivation of K. Then the following identities hold for all $x, y \in K$.

(i) $d(x * y) \le d(x)$ and $d(x * y) \le d(y)$,

(ii) d is isotone.

Proof. (i) Let $x, y \in K$. Then by using (K7), we obtain

$$d(x) = d(x + (x * y)) = d(x) + d(x * y).$$

Hence we get $d(x * y) \leq d(x)$. Also, d(y) = d(y + (x * y)) = d(y) + d(x * y), and so $d(x * y) \leq d(y)$.

(ii) Let $x \leq y$. Then we have x + y = y, and so d(y) = d(x + y) = d(x) + d(y). Hence $d(x) \leq d(y)$.

THEOREM 3.11. Let M be a nonzero ideal of an integral incline K. If d is a nonzero (f, g)-derivation on K where g is a nonzero function on M, d is a nonzero (f, g)-derivation on M.

Proof. Assume that g is a nonzero function on M but d is zero (f, g)-derivation on M. Then there is an element $x \in M$ such that $g(x) \neq 0$ and d(x) = 0. By (K9), $x * y \leq x$ and since M is an ideal of K, we get d(x * y) = 0. Hence we have

$$0 = d(x * y) = (d(x) * f(y)) + (g(x) * d(y))$$

= g(x) * d(y).

Since K has no zero divisors, we have g(x) = 0 or d(y) = 0. Also, we get d(y) = 0 for all $y \in K$ since $g(x) \neq 0$. This contradicts that d is a nonzero (f, g)-derivation on K. Hence d is nonzero on M.

Kyung Ho Kim

Let d be a (f, g)-derivation of K. Define a set Kerd by

 $Kerd := \{ x \in K \mid d(x) = 0 \}.$

PROPOSITION 3.12. Let d be a (f,g)-derivation of K. Then Kerd is a subincline of K.

Proof. Let
$$x, y \in Kerd$$
. Then $d(x) = 0, d(y) = 0$ and
 $d(x * y) = d(x) * f(y) + g(x) * d(y)$
 $= 0 * y + x * 0$
 $= 0 + 0 = 0,$

and

$$d(x + y) = d(x) + d(y)$$

= 0 + 0 = 0.

Therefore, $x * y, x + y \in Kerd$. This completes the proof.

THEOREM 3.13. Let d be a (f,g)-derivation of K. Then Kerd is an ideal of K.

Proof. Let d be a (f, g)-derivation of K. By Proposition 3.12, we know that Kerd is a subincline of K. Let $x \leq y$ and $y \in Kerd$. Then we have y = x + y and d(y) = 0. Hence

$$0 = d(y) = d(x + y) = d(x) + d(y) = d(x) + 0 = d(x),$$

which implies $x \in Kerd$, which implies that Kerd is an ideal of K. \Box

PROPOSITION 3.14. Let d be a (f,g)-derivation of K. If $x \in Kerd$, we have $x * y \in Kerd$.

Proof. It is clear from Theorem 3.13 since $x * y \le x \in Kerd$. This completes the proof. \Box

Let d be a (f, g)-derivation of K. Define a set $Fix_d(K)$ by

$$Fix_d(K) := \{x \in K \mid f(x) = g(x)\}.$$

PROPOSITION 3.15. Let d be a (f,g)-derivation of K. Then $Fix_d(K)$ is a subincline of K.

Proof. Let $x, y \in Fix_d(K)$. Then f(x) = g(x), f(y) = g(y), and so f(x*y) = f(x)*f(y) = g(x)*g(y) = g(x*y) and f(x+y) = f(x)+f(y) = g(x)+g(y) = g(x+y). This implies $x*y, x+y \in Fix_d(K)$. Thus $Fix_d(K)$ is a subincline of K.

DEFINITION 3.16. A subincline I of an incline algebra K is called a k-ideal if $x + y \in I$ and $y \in I$, then $x \in I$.

648

PROPOSITION 3.17. Let d be a (f, g)-derivation of an incline algebra K. Then Kerd is a k-ideal of K.

Proof. In Proposition 3.12, it was showed that Kerd is a subincline of K. Let $x + y \in K$ and $y \in Kerd$. Then we have d(y) = d(x + y) = 0. Hence 0 = d(y) = d(x + y) = d(x) + d(y) = d(x) + 0 = d(x), which implies that Kerd is a k-ideal of K.

THEOREM 3.18. Let d be a (f, g)-derivation of K and let K be additively right cancellative. Then $Fix_d(K)$ is a k-ideal of K.

Proof. By Proposition 3.15, $Fix_d(K)$ is a subincline of K. Let $x + y \in Fix_d(K)$ and $y \in Fix_d(K)$. Then g(x) + g(y) = g(x + y) = f(x + y) = f(x) + f(y) = f(x) + g(y). Hence we have f(x) = g(x), which implies $x \in Fix_d(K)$. This completes the proof. \Box

References

- S. S. Ahn, Y. B. Jun, and H. S. Kim, *Ideals and quotients of incline algebras*, Commun. Korean Math. Soc. 16 (2001), 573-583.
- [2] S. S. Ahn and H. S. Kim, On r-ideals in incline algebras, Commun. Korean Math. Soc. 17 (2002), 229-235.
- [3] Z. Q. Cao, K. H. Kim, and F. W. Roush, *Incline algebra and applications*, John Wiley and Sons, New York, 1984.
- [4] K. H. Kim and F. W. Roush, *Inclines of algebraic structures*, Fuzzy sets and systems 72 (1995), 189-196.
- [5] K. H. Kim, F. W. Roush, and G. Markowsky, *Representation of inclines*, Algebra Colloq. 4 (1997), 461-470.
- [6] W. Yao and S. Han, On ideals, filters, and congruences in inclines, Bull. Korean Math. 46 (2009), no. 3, 591-598.

*

Department of Mathematics Korea National University of Transportation Chungju 380-702, Republic of Korea *E-mail*: ghkim@ut.ac.kr