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COUNTABILITY AND APPROACH THEORY

Hyei Kyung Lee*

Abstract. In approach theory, we can provide arbitrary products
of ∞p−metric spaces with a natural structure, whereas, classically
only if we rely on a countable product and the question arises, then,
whether properties which are derived from countability properties
in metric spaces, such as sequential and countable compactness, can
also do away with countability. The classical results which simplify
the study of compactness in pseudometric spaces, which proves that
all three of the main kinds of compactness are identical, suggest a
further study of the category pMET∞.

1. Introduction

In the paper we will be mainly working within the category pMET∞
of extended pseudo-metric spaces and non expansive maps, which, as
we know, is bicoreflectively embedded in the category AP of approach
spaces and contractions. We then first emphasize the fact that, in ap-
proach theory, we can provide arbitrary products of ∞p−metric spaces
with a natural structure, viz. a notion of distance working no longer
between pairs of points but rather between points and sets, whereas,
classically, we only have that a product of metrizable spaces is metriz-
able only if we rely on a countable product. Secondly, if we can forget
about the necessity to have only a countable product in approach theory
and we can have a structure which is good for any kind of products, the
question arises now whether properties which are derived from count-
ability properties in metric spaces, such as sequential and countable
compactness, can also do away with countability. Clearly, in approach
theory, countability will still play a role as far as topological spaces are
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concerned because topological spaces are nicely embedded as a simulta-
neously concretely reflective and coreflective subconstruct of AP.

By depicting further relationships between categories in the frame
of approach theory, we recall that the full subconstruct consisting of
all the subspaces of products of ∞pmetric approach spaces in AP (i.e.,
the epireflective hull of pMET∞ in AP), is the category of uniform
approach spaces, UAP.

2. Preliminaries

We shall use the following symbols :
R+ := [0,∞[, R∗+ :=]0,∞[, R+ := [0,∞].

F(X) will stand for the set of all filters on X, and U(X) will stand for
the set of all ultrafilters on X. If F is a given filter on X, then we will
denote by F(F ) the collection of all filters on X which are finer than F ,
and by U(F ) the collection of all ultrafilters on X which are finer than
F .

We recall that, in an approach space X, the adherence operator is
defined as

αF (x) + sup
F∈F

δ(x, F ), ∀x ∈ X, ∀F ∈ F(X)

where δ : X × 2X → R+ is the distance on X determining the approach
structure.
Finally, if |SET| is the class of all sets and X ∈ |SET|, we shall denote
the set of all finite (resp. countable) subsets of X by 2(X) (resp. 2((X))).

We recall also that a filter F on X is called countable if it has a filter
base with a countable number of elements.

By Fc(X)(resp. Fe(X)) we denote the countable (resp. elementary)
filters on X.

3. Countable and sequential compactness

In a way the concept of compactness arises from considerations of
accumulation points of infinite sets. Applications of its contents compel
a central technique of topology that of reducing and refining covers and
various formulations : countable compactness, sequential compactness,
Lindelöf property...
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After having such concepts been put into the framework of approach
spaces, a unified image was produced of compactness (countable com-
pactness, sequential compactness) for topological spaces and of bound-
edness (total boundedness) for metric spaces.

Now, as far as these countability properties are concerned, we wonder
in what sense countability is still an important property in approach
theory and can differentiate between situations. We will be able to see
that countability happens to be deeply inherent in the properties and
results like those in this section can not be improved.

In [8] R. Lowen introduced the concept of a measure m(X) (also
noted here as µ(X)) of compactness for an approach space X, as a
canonical concept arising naturally from Kuratowski’s measure of non-
compactness for subsets of a complete metric space and, as one might
expect, it was shown that µ(X) = 0 for a compact topological approach
space and µ(X) = ∞ for a non-compact space.

Similarly, a measure of countable compactness CC(X) was intro-
duced in [3] for which, in a topological approach space, a null value is
translated in being countably compact. We recall,

“For (X, (A(x))x∈X) an approach space, the following equivalent ex-
pressions give the measure of compactness:

• CC(X) = sup
(xn)n∈N∈r(X)

inf
x∈X

α({xn})(x)

• CC2(X) = sup
φ∈∏

x∈XA(x)
sup

(xn)n∈N∈r(X)
inf
x∈X

lim inf
n→∞ φ(x)(xn)

• CC3(X) = sup
F∈Fe(X)

inf
x∈X

αF (x)

• CC4(X) = sup
F∈Fc(X)

inf
x∈X

αF (x),

where we put r(X) for the set of all sequences on X.”
We have these formulas and they represent countable compactness

but there is a characterization, well known from topological spaces,
which is missing: how can we measure countable compactness in X
by working with its sets of local distances or “neighbourhoods”?, i.e. by
working with its approach system. We shall next provide it.

For an approach space X we define

µcc(X) := sup
ψ∈Ψ

inf
K∈2

(Γψ)
sup
z∈X

inf
k∈K

ψ(k)(z)

where Ψ = {ψ : Γψ ⊂ N→ ∪x∈XA(x) | ∀x, ∃n ∈ Γψ : ψ(n) ∈ A(x)}.
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Theorem 3.1. For any approach space X:

µcc(X) = sup
F∈Fc(X)

inf
x∈X

αF (x).

Proof. Put m(X) := sup
F∈Fc(X)

inf
x∈X

αF (x). To show that µcc(X) ≤ m(X)

suppose that, for some r ∈ R+ : µcc(X) > r. Then there exists ψ0 ∈ Ψ
such that for all K ∈ 2(Γψ0

) : sup
z∈X

inf
k∈Γψ0

ψ0(k)(z) > r. Consequently, if

for all K ∈ 2(Γψ0
), we put

FK := {z ∈ X| inf
k∈K

ψ0(k)(x) > r},

then it follows that FK 6= ∅ and FK1∩FK2 = FK1∪K2 , for any K, K1, K2 ∈
2(Γψ0

). Thus the collection {FK | K ∈ 2(Γψ0
)} is a basis for a countable

filter F ∗. Since ψ0 is an element in Ψ, we can make an arbitrary choice
x 7→ n(x) such that ψ0(n(x)) ∈ A(x) and, hence, ψ0 ◦ n ∈ ∏

A(x).
Then it follows that

m(X) = sup
F∈Fc(X)

inf
x∈X

sup
ϕ∈A(x)

sup
F∈F

inf
y∈F

ϕ(y)

≥ inf
x∈X

sup
ϕ∈A(x)

sup
F∈F ∗

inf
y∈F

ϕ(y)

= sup
φ∈∏

X A(x)
inf
x∈X

sup
F∈F ∗

inf
y∈F

φ(x)(y)

= sup
φ∈∏

X A(x)
inf
x∈X

sup
K∈2

(Γψ0
)

inf
y∈FK

φ(x)(y)

≥ inf
x∈X

sup
K∈2

(Γψ0
)

inf
y∈FK

ψ0(n(x))(y)

≥ inf
x∈X

inf
y∈F{n(x)}

ψ0(n(x))(y)

≥ inf
x∈X

r = r.

From the arbitrariness of r it follows that µcc(X) ≤ m(X).
On the other hand, to show that µcc(X) ≥ m(X), suppose that for

some
r ∈ R+ : m(X) > r. Then there exists a countable filter F0 = 〈{Fn | n ∈
N}〉
and there exists φ0 ∈

∏

x∈X

A(x) such that, for all x ∈ X,

sup
n∈N

inf
y∈Fn

φ0(x)(y) > r,
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which means that, for each x ∈ X, there exists nx ∈ N with

Fnx ⊂ {z ∈ X | φ0(x)(z) > r}.
First, put λ : X → N : x → nx and Γ := {n ∈ N | λ−1(n) 6= ∅}.
As a consequence, for all n ∈ Γ:

Fn ⊂
⋂

x∈λ−1(n)

{φ0(x) > r}.

Secondly, put ψ0(n) := inf
x∈λ−1(n)

φ0(x), for n ∈ Γ, and, clearly, since for all

x ∈ X : nx ∈ Γ, we know that ψ0 ∈ Ψ.
Now, take K ∈ 2(Γ) arbitrary and choose

z0 ∈
⋂

n∈K
Fn ⊂

⋂

n∈K
{z ∈ X | ψ0(n)(z) ≥ r}.

Then inf
n∈K

ψ0(n)(z0) ≥ r which means sup
z∈X

inf
n∈K

ψ0(n)(z) ≥ r and

µcc(X) = sup
ψ∈Ψ

inf
K∈2

(Γψ)
sup
z∈X

inf
k∈K

ψ(k)(z) ≥ inf
K∈2(Γ)

sup
z∈X

inf
n∈K

ψ0(n)(z) ≥ r.

Again, from the arbitrariness of r it follows that µcc(X) ≥ m(X).

It was already mentioned, but is easily deduced from the above result
that, for topological spaces, µcc(X) = 0 if and only if (X, τ) is countably
compact.

We shall, next recall the definition of a third form of compactness
[3] which sometimes it is presented for analysts, as the most important
form of compactness in topological spaces.

Definition 3.2. [3] For an approach space the measure of sequential
compactness is defined as

µsc(X) = sup
(xn)n∈N∈r(X)

inf
k↑:N→N

inf
x∈X

λ < xk(n) > (x).

Again we encounter a measure with properties which one might want
it to have and, for a topological approach space X, we have µsc(X) ∈
{0,∞} and, further, µsc(X) = 0 if and only if every sequence in X has
a converging subsequence.

Perfectly analogous to 6.1.4 and 6.1.5 from [10], it can be proved
that, in the particular case of the category pMET∞ we attain µcc(X) =
µsc(X) = 0 if and only if (X, d) is totally bounded and, within the
category pqMET∞ of extended pseudo-quasi-metric spaces and non ex-
pansive maps, µcc(X) < ∞, and µsc(X) < ∞ if and only if (X, d) is
bounded.
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In general the only implications among the three kinds of compactness-
namely µc, µcc and µsc - are that both µc and µsc are bigger than µcc.

Further, the relationships between compactness, countable compact-
ness and sequential compactness in topological spaces can provide us
with topological approach spaces which show that the inequalities men-
tioned are in general strict. The next proposition from [3] proves that
there are other relationships in special cases, as we will also have the
opportunity to see later in Section 4.

Proposition 3.3. [3] For a first countable approach space X, the
measures of countable and sequential compactness coincide.

3.1. Invariance properties

We devote this subsection to the investigation of the basic structural
questions about continuous images and products for which the measure
of compactness and countable and sequential compactness feature gen-
eralizations of known properties in TOP.

In [8] and [3] it is shown that the Tychonoff theorem can be general-
ized for approach spaces in the following way:
If (Xj , Aj)j∈J ⊂ |AP| then,

µc(
∏

j∈J
Xj) = sup

j∈J
µc(Xj).

and, for approach spaces Xi, i ∈ N,

µsc(
∏

i∈NXi) = sup
i∈N

µsc(Xi).

Further, in [3], it is mentioned that the Novak space provides an
example of a countably compact topological space with the characteristic
that the product of this space with itself is not a countably compact
space.

As a conclusion we can only state that, for products of approach
spaces, and since the projections are contractions, the measures of count-
able compactness of the components are always less than or equal to the
corresponding measure for the product(see Theorem 3.15, [3]).

We do have a somewhat more restrictive result for this notion, that
is to say that, for first countable approach spaces (Xi)i∈N,

µcc(
∏

i∈NXi) = sup
i∈N

µcc(Xi).

Further, we would like to investigate whether countable compactness,
sequential compactness and boundeness admit similar properties in AP
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as those known in TOP under the formation of continuous images.
First, we recall a concept in AP similar to the concept of an open map
in TOP.

Definition 3.4. [11] Let X and Y be approach spaces. Let f : X →
Y be a map and x ∈ X. Then f is expansive at x if and only if for all
ϕ ∈ A(x), f(ϕ) belongs to A′(f(x)), (where f(ϕ)(y) = inf

y=f(z)
ϕ(z)).

As it was expected, for (X,=) and (Y,=′) topological spaces, their ex-
pansive maps between them happen to be the open ones.
We do have now the following result,

Theorem 3.5. Let (X, A) and (X ′, A′) be approach spaces and f :
X → X ′ a bijective map. Then the following are equivalent:

1. f : (X,A) → (X ′, A′) is a contraction
2. g(= f−1) : (X ′, A′) → (X, A) is an expansion.

Proof. Let x ∈ X, ϕ′ ∈ A′(f(x)). Then x = g(f(x)) and for all
z ∈ X,

g(ϕ′)(z) = inf
g(y)=z

ϕ′(y)

= ϕ′(f(z))

= (ϕ′ ◦ f)(z)

and the claim (ϕ′ ◦ f) ∈ A(x) is equivalent to g(ϕ′) ∈ A(g(f(x))).

Recalling now Theorem 3.15[3], the fact that the continuous image of
a compact (countably compact, sequentially compact) topological space
is compact (countably compact, sequentially compact), is trivially de-
rived.

4. Case pMET∞

We have seen that the properties for which you need countability are
the same in AP so the main point is extended pseudometric approach
spaces here and products which means completely regular spaces.

The classical results which simplify the study of compactness in pseu-
dometric spaces, which proves that all three of the main kinds of com-
pactness are identical, suggest a further study of the category pMET∞.

Clearly for the pMET∞ space X, the measures of countable and
sequential compactness coincide and both will be smaller than the mea-
sure of compactness and we will be able to refine more their relation.
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In order to achieve this, we will be using a mechanism to measure the
deviation an approach space may have from being Lindelöf and from
being precompact, that is, the canonical measures of Lindelöf and pre-
compactness.

1. In [12] a measure of precompactness was defined in the uniform
setting of approach theory. We rephrase this definition for spaces
in pMET∞ which are defined via a metric d,

µpc(X) = inf
Y ∈2X

sup
z∈X

inf
y∈Y

d(y, z).

It was already shown in [12] but it is easily deduced from the above
formula that, for ε < µpc(X),no finite set Y can be found such that

X ⊂ {d < ε}(Y )

and, thus, for the measure of compactness of the underlying ap-
proach space it holds

µc(X) = sup
φ∈∏

z∈X Φ(z)
inf

Y ∈2(X)
sup
z∈X

inf
y∈Y

φ(y)(z)

= inf
Y ∈2(X)

sup
z∈X

inf
y∈Y

d(y, z)

= µpc(X)

2. [2] If X is an approach space then the measure of Lindelöf of X is
defined as

L(X) = sup
φ∈∏

z∈X Φ(z)
inf

Y ∈2((X))
sup
z∈X

inf
y∈Y

φ(y)(z)

and for the pMET∞ space (X, d) we have

L(X) = inf
Y ∈2((X))

sup
z∈X

inf
y∈Y

d(y, z)

and, equivalently [2],

L(X) = sup
F∈Fw(X)

inf
x∈X

αF (x) = sup
F∈Fw(X)

inf
x∈X

sup
F∈F

inf
y∈F

d(x, y)

where Fw stands for the set of filters with the countable intersection
property.

Analogously to the process done in Theorem 3.1, we obtain for the
∞-pseudometric space X,

(4.1) µcc(X) = sup
λ∈Λ

inf
K∈2(Γλ)

sup
z∈X

inf
k∈K

inf
x∈λ(k)

d(x, z)

where

Λ := {λ : Γλ ⊂ N→ 2X | ∀x, ∃nx ∈ Γλ : x ∈ λ(nx)}
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and, further we have the following result.

Theorem 4.1. For an extended pseudometric approach space X, we
have,

µsc(X) = µcc(X) = L(X) = µc(X).

Proof. Since, clearly, Fe(X) ⊂ Fw(X) we can begin with:

sup
F∈Fe(X)

inf
x∈X

sup
F∈F

inf
y∈F

d(x, y) = µcc(X)

≤ sup
F∈Fw(X)

inf
x∈X

sup
F∈F

inf
y∈F

d(x, y) = L(X)

≤ sup
F∈F(X)

inf
x∈X

sup
F∈F

inf
y∈F

d(x, y) = µc(X)

Secondly, as a consequence of (4.1), we have

L(X) ≤ µcc(X).

Thirdly, suppose that, for some r ∈ R+, there exists F ∈ F(X) such
that

inf
x∈X

sup
F∈F

inf
y∈F

d(x, y) > r.

Then, for all x ∈ X, there exists Fx ∈ F :

d(x, y) > r, ∀y ∈ Fx.

In [2] it was shown that, for a pqMET∞ space X, we have,

L(X) = sup
x∈X

inf
y∈A

d(y, x), for a certain A ∈ 2((X)).

Then, in particular, for each y ∈ A there exists Fy ∈ F with d(y, x) > r,
for all x in Fy and,

L(X) ≥ inf
y∈A

sup
x∈X

d(y, x) > r

which proves that µc(X) ≤ L(X).
Finally, the theorem is proved as we recall that, for a first countable

approach space, the measures of countable and sequential compactness
coincide.
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