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CURVES OF MAXIMAL GENUS ON

SURFACE SCROLLS

Heesang Park*

Abstract. We investigate a minimal set of generators of a homo-
geneous ideal of a curve of degree d on a linearly normal smooth
surface scroll W in Pr whose arithmetic genus is maximal among
curves of degree d on W .

1. Introduction

For given two integers d, r with d ≥ r ≥ 3, Castelnuovo [2] proved
that there is an upper bound π(d, r) for the arithmetic genus of irre-
ducible, nondegenerate curves of degree d in Pr. Here π(d, r) is given
by

π(d, r) =

(
m

2

)
(r − 1) +mε

where d = m(r− 1) + ε+ l, ε = 0, . . . , r− 2. He also classified curves for
which the bound is attained.

In this paper we will investigate a curve lying on a linearly normal
smooth surface scroll W in Pr whose arithmetic genera are maximal
among curves of degree d on W ; Theorem 2.3. Especially we are in-
terested in a minimal set of generators of homogeneous ideals of such
curves; Proposition 2.5.

Every linearly normal surface scroll in Pr is the image of the unique
ruled surface by an embedding defined by a unisecant linear series on
the ruled surface. So a degree of a curve on W is given by a fixed ample
divisor H on the ruled surface which gives the embedding of the ruled
surface into Pr. So the paper deals with a curve on a ruled surface with
a fixed ample divisor on the ruled surface.
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2. Generators of homogeneous ideals of maximal curves

Let Y be a smooth curve of genus gy ≥ 1. Let π : P(E) → Y be
a ruled surface over Y with the e-invariant e and let S0 be a minimal
degree section of P(E), that is, S0 is the section of P(E) with S2

0 = −e.
Assume that E0 = E ⊗ OY (−N) is normalized. Setting n = degN and
OY (B) = det E with b = degB, we have

(2.1) e = −deg E0 = 2n− b.
Throughout this paper, fix a divisor Z ∈ Div(Y ) with

z := degZ ≥ max{2gy + 1, 2gy + 1 + e}.
and set

H = S0 + π∗Z and r = dim |H|.
The H-degree of a curve X ⊂ P(E) is defined by the intersection number
X.H.

Lemma 2.1. The linear series |H| on P(E) is very ample and

(2.2) r = dim |H| = −e+ 2z − 2gy + 1.

Proof. By [3, V, Ex. 2.11], the linear series |H| is very ample. We now
count h0(P(E), H). Since π∗(OP(E)(S0)) ∼= E0 by [3, V, 2.4], it follows
by the projection formula that

h0(P(E), H) = h0(Y, E0 ⊗OY (Z))

= deg(E0 ⊗OY (Z))− 2(gy − 1) + h1(Y, E0 ⊗OY (Z))

= −e+ 2z − 2gy + 2 + h0(Y, E∨
0 ⊗OY (KY − Z)).

It is enough to prove that h0(Y, E∨
0 ⊗OY (KY − Z)) = 0. Note that we

have

E∨
0
∼= E0 ⊗ det E0−1 ∼= E0 ⊗ (det E−1 ⊗OY (2N)) = E0 ⊗OY (−B + 2N);

hence, it follows that

h0(Y, E∨
0 ⊗OY (KY − Z)) = h0(Y, E0 ⊗OY (KY − Z −B + 2N)).

By Equation (2.1) and the assumption z − e ≥ 2gy + 1, we have

deg(KY − Z −B + 2N) = 2gy − 2− (z − e) < 0;

however, E0 is normalized, hence

h0(Y, E0 ⊗OY (KY − Z −B + 2N)) = 0.
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Remark 2.2. Let
φH : P(E) ↪→ Pr

be an embedding defined by |H| and set

W = φH(P(E)).

Since H2 = −e + 2z, the surface scroll W is of degree (r − 1 + 2gy) in
Pr.

Theorem 2.3. The maximal arithmetic genus of curves of degree d
lying on W = φH(P(E)) in Pr is equal to

(2.3)

(
m

2

)
(r − 1 + 2gy) +mε+ gy,

where

(2.4) m =

[
d− 1 + gy
r − 1 + 2gy

]
is the greatest integer not exceeding (d− 1 + gy)/(r − 1 + 2gy) and

ε = (d− 1 + gy)− (r − 1 + 2gy)m.

Proof. Let X be a curve on P(E) of H-degree d. Set X ∼ iS0 + π∗J
for some J ∈ Div(Y ). We have

d = X.H = −ie+ iz + j,

where j = deg J . By the adjunction formula, we get

pa(X) = (i− 1)

(
d− 1 + gy −

i

2
(r − 1 + 2gy)

)
+ gy.

An elementary calculation shows that pa(X) is maximized for fixed d
and r when

i =

[
d− 1 + gy
r − 1 + 2gy

]
+ 1.

Remark 2.4. If X ⊂ P(E) is a curve of H-degree d with

pa(X) =

(
m

2

)
(r − 1 + 2gy) +mε+ gy,

then we have

(2.5) X ∼ (m+ 1)H + π∗(J − (m+ 1)Z).

Note that

(2.6) deg(J − (m+ 1)Z) = −r + ε+ 2− 3gy.
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Proposition 2.5. Assume that z ≥ 3+e if gy = 1 and z ≥ max{3gy+
e, 3gy + e

2} if gy ≥ 2. Let X ⊂ P(E) be a curve of H-degree d with the
maximal arithmetic genus

pa(X) =

(
m

2

)
(r − 1 + 2gy) +mε.

Let I ⊂ C[X0, . . . , Xr] be the homogeneous ideal defining X under the
embedding by |H|. If |(m+ 1)Z − J | is base-point-free, then a minimal
set of generators for I consists of quadrics and polynomials of degree
m + 1. On the other hand, if |(m + 1)Z − J | has a base point, then
a minimal set of generators for I consists of quadrics, polynomials of
degree m+ 1, and, in addition, polynomials of degree m+ 2.

Remark 2.6. By [4] and the assumption on the degree z, the very
ample linear series |H| satisfies N1 property, that is, the embedding φH
is a projectively normal embedding and the homogeneous ideal of W is
generated by quadrics.

We divide the proof of Proposition 2.5 into the following three lem-
mas.

Lemma 2.7. Every hypersurface of degree l ≤ m containing X con-
tains W .

Proof. Consider the short exact sequence of ideal sheaves

0→ IW,Pr(l)→ IX,Pr(l)→ IX,W (l)→ 0.

Since l < m+ 1, we have

H0(W, IX,W (l)) = H0(P(E),−X + lH)

= H0(P(E), (l −m− 1)S0 + π∗(lZ − J)) = 0.

Therefore

H0(Pr, IX,Pr(l)) = H0(Pr, IW,Pr(l))

for l ≤ m.

Lemma 2.8. Under the hypothesis of Proposition 2.5, modulo the
ideal of W , there are exactly h0(Y, (m+ 1)Z − J) linearly independent
hypersurfaces of degree m+ 1 containing X.

Proof. By Remark 2.6, we have

H1(Pr, IW,Pr(m+ 1)) = 0.

From the short exact sequence of ideal sheaves, we have
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0→ H0(Pr, IW,Pr(m+ 1))→ H0(Pr, IX,Pr(m+ 1))

→ H0(W, IX,W (m+ 1))→ 0.

Since

H0(W, IX,W (m+ 1)) ∼= H0(Y, (m+ 1)Z − J),

the proof is done.

Lemma 2.9. Under the hypothesis of Proposition 2.5, the natural
map

H0(W, IX,W (m+ 2))⊗H0(W,OW (α))→ H0(W, IX,W (m+ 2 + α))

is surjective for any α > 0. Furthermore, if |(m+ 1)Z−J | is base-point-
free, then the natural map

H0(W, IX,W (m+ 1))⊗H0(W,OW (α))→ H0(W, IX,W (m+ 1 + α))

is also surjective for any α > 0.

Proof. Since

IX,W (m+ 2) ∼= OP(E)(S0 + π∗((m+ 2)Z − J)),

we have to prove that the map

H0(P(E), S0 + π∗((m+ 2)Z − J))⊗H0(P(E), αS0 + π∗(αZ))

−→ H0(P(E), (α+ 1)S0 + π∗((m+ 2)Z − J + αZ))

is surjective. Hence, it is equivalent to prove that the following map is
surjective:

H0(Y, E0 ⊗OY ((m+ 2)Z − J))⊗H0(Y, symα E0 ⊗OY (αZ))

−→ H0(Y, E0 ⊗ symα E0 ⊗OY ((m+ 2)Z − J + αZ)).

For this, we have the following result:

Lemma 2.10 ([1, Proposition 2.2]). Let F and G be vector bundles
over Y with F generated by global sections. Let µ−(L) := min{µ(Q) :
L → Q → 0}, where µ(Q) = degQ/rankQ. If

1. µ−(G) > 2gy and
2. µ−(G) > 2gy + rank(F)(2gy − µ−(F))− 2h1(Y,F),

then the natural multiplication map

τ : H0(Y,F)⊗H0(Y,G)→ H0(Y,F ⊗ G),

is surjective.
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Set F = E0 ⊗OY ((m+ 2)Z − J) and G = symα E0 ⊗OY (αZ). First,
we will show that F is generated by global sections. By [1, Lemma 1.12],
a vector bundle L on Y is generated by global sections if µ−(L) ≥ 2gy;
hence it is enough to show that

µ−(F) ≥ 2gy.

Note that µ−(E0) = −e if e ≥ 0 and µ−(E0) = − e
2 if e < 0; cf. [4, §2.4].

From [1, Lemma 2.5], we have µ−(L⊗M) = µ−(L) +µ−(M) for vector
bundles L and M on Y . Therefore we have

µ−(F) = µ−(E0) + µ−(OY ((m+ 2)Z − J))

=

{
−e+ r − ε− 2 + 3gy + z if e ≥ 0,

−e
2

+ r − ε− 2 + 3gy + z if e < 0
by Equation (2.6)

≥

{
−e+ gy + z if e ≥ 0,

−e
2

+ gy + z if e < 0
since ε ≤ r − 2 + 2gy

≥ 2gy. by the assumption on z

Second, we will prove that µ−(G) > 2gy. From [1, Lemma 2.5], we
have µ−(symα E0) = αµ−(E0). Therefore we have

µ−(G) = αµ−(E0) + µ−(OY (αZ))

=

{
−αe+ αz if e ≥ 0,

−α · e
2

+ αz it e ≤ −1

> 2gy.

Finally, since 2gy − µ−(F) ≤ 0, the condition (2) of Lemma 2.10
holds. So fat, we proved the first assertion of Lemma 2.9.

For the second assertion, we have

IX,W (m+ 1) ∼= OP(E)(π
∗((m+ 1)Z − J));

hence it is equivalent to prove that the following map is surjective:

H0(Y, (m+ 1)Z − J)⊗H0(Y, symα E0 ⊗OY (αZ))

−→ H0(Y, symα E0 ⊗OY ((m+ 1)Z − J + αZ)).

Set F = OY ((m + 1)Z − J) and G = symα E0 ⊗ OY (αZ). Since we
assumed that F is generated by global sections, the second assertion
also follows by Lemma 2.10.
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Remark 2.11. It is clear that the natural map

H0(W, IX,W (m+ 1))⊗H0(W,αH)→ H0(W, IX,W (m+ 1 + α))

cannot be surjective if |(m+ 1)Z − J | has a base point.
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