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BAER SPECIAL RINGS AND REVERSIBILITY

Hai-Lan Jin*

Abstract. In this paper, we apply some properties of reversible
rings, Baerness of fixed rings, skew group rings and Morita Context
rings to get conditions that shows fixed rings, skew group rings
and Morita Context rings are reversible. Moreover, we investigate
conditions in which Baer rings are reversible and reversible rings
are Baer.

1. Introduction

Throughout this paper all rings are associative rings with identity un-
less otherwise stated. Let R be a ring. We denote Sr(R)(resp. Sl(R) by
the set of right(resp. left)semi-central idempotents in R. For a nonempty
subset X of R, rR(X)(resp. lR(X)) will be denoted by the right(resp.
left)annihilator of X in R. In 1990, Habeb studied zero commutative
ring in [5]. A ring R is called zero commutative, if ab = 0 implies
ba = 0 for any a, b ∈ R. In 1999[4] used the terminology ”reversible
ring” instead of ”zero commutative ”. Obviously, a commutative ring
is reversible ring, but converse is not true. In fact every reversible ring
is semi-commutative but converse is not true(for more details see [12]).
Moreover, A ring R is called right (resp. left)symmetric ring, if rst = 0
implies rts = 0 (resp. srt = 0), for any r, s, t ∈ R. It is easy to check
that reduced ring is symmetric ring,a symmetric ring with identity is
a reversible and a reversible ring is semi-commutative. In 2002, Marks
[16] studied conditions in which a group ring becomes reversible, and
studied some relationships of among symmetric rings, reduced rings and
reversible rings. Baer ring is one of the classic rings and it is applied
widely in the field of C*-algebra, Von Neumann algebra and Coding
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Theory. A ring R is called Baer ring if a right annihilator of every
nonempty subset of R is generated, as a right ideal, by an idempotent
of R. The definition is left-right symmetric. In[1],[2] and [8] it is proved
Baer ring is quasi-Baer ring, but Converse does not hold. On the ba-
sis of conclusion above, Birkenmeier [2] proved that biregular rings and
quasi-Baer rings are p.q.-Baer rings. Also he proved that quasi-Baer ring
and p.q.-Baer ring are closed under direct product, and right p.q.-Baer
rings have Morita invariant property. Furthermore, Jin and Zhao [9]
have studied (quasi-) Baerness of skew group rings and fixed rings, and
proved that if R is simple ring with identity, G is an outer group of ring
automorphism of R, then a skew group ring R ∗ G is Baer ring. simi-
larly, if R is Artin simple ring with identity, G is an outer group of ring
automorphism of R, then a fixed ring RG is Baer ring. Through the way
of factorizating Morita Context ring, Jin [8] found conditions in which
Morita Context ring becomes a (quasi-)Baer ring. Morita [10] introduce
a Morita Context ring and studied its structure. Morita Context ring is
generalized matrix ring (R, V,W, S, ψ, ϕ) with six in one algebra struc-
ture. It is proved that all of 2 × 2 matrix ring is Morita Context ring
under addition and multiplication of matrices. Montgomery [18] used
Morita Context theory to study properties of Morita Context ring with
two zero-module homomorphism. Wang [20]used a counterexample to
prove Baer ring has not Morita invariant property and used Morita Con-
text theory to study Baerness, (quasi-)Baerness and right quasi Baerness
of 2×2 Morita Context ring with zero-module homomorphism and then
extended it to 3× 3 Morita Context ring. But the reversibility of fixed
ring, skew group ring, Morita Context ring and Baer ring have not been
studied. So we are going to study the reversibility of ring, and Baerness
of fixed rings, skew group rings and Morita Context rings. Furthermore
we obtaine conditions in which fixed ring, skew group ring and Morita
Context ring become reversible and conditions in which Baer ring and
reversible ring replace each other.

2. Preliminaries

Definition 2.1. [4] A ring R is called a reversible, if ab = 0 implies
ba = 0 for any a, b ∈ R.

Evidently, commutative ring is a reversible, and a ring that have no
zero divisor is a reversible. In fact, if R is a division ring and ab = 0,
then a = 0 or b = 0, so ba = 0, for any a, b ∈ R.
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Proposition 2.2. [15] Every reduced ring is a reversible ring, but
the converse does not hold.

Example 2.3. LetR is a reduced ring and S =

{(
a b
0 a

)∣∣∣∣ a, b ∈ R},

then S is a reversible ring, but S is not a reduced ring. In fact, for any(
a1 b1
0 a1

)
,

(
a2 b2
0 a2

)
∈ S, if(

a1 b1
0 a1

)(
a2 b2
0 a2

)
=

(
a1a2 a1b2 + b1a2

0 a1a2

)
= 0

then a1a2 = 0, a1b2 + b1a2 = 0. since R is a reduced ring, R is a
reversible ring, so a2a1 = 0. And a2a1b2 + a2b1a2 = 0, so a2b1a2 = 0.
That is a2b1a2b1 = 0 and a2b1 = 0, thus b1a2 = 0 consequently we have
a1b2 = 0 and so b2a1 = 0. Then(

a2 b2
0 a2

)(
a1 b1
0 a1

)
=

(
a2a1 a2b1 + b2a1

0 a2a1

)
= 0.

And S is a reversible ring. Otherwise, take a nonzero element

(
0 b
0 0

)
in S, since

(
0 b
0 0

)2

= 0, S is not a reduced ring.

Proposition 2.4. Let R be a reduced ring. Then the polynomial
ring R[x] is a reversible ring.

Proof. For any
m∑
i=1

aix
i,

n∑
i=1

bjx
j ∈ R[x] , if (

m∑
i=1

aix
i)(

n∑
i=1

bjx
j) =

m+n∑
k=1

ckx
k = 0, then ck =

∑
i+j=k

aibj = 0 (k = 0, 1, 2, · · ·m + n) where

ck =
∑

i+j=k

aibj . That is

c0 = a0b0 = 0
c1 = a0b1 + a1b0 = 0
c2 = a0b2 + a1b1 + a2b0 = 0

...
cm+n = a0bm+n + a1bm+n−1 + · · ·+ am+nb0 = 0

since R is a reduced ring, so R is a reversible ring and b0a0 = 0. Because
c1a0 = a0b1a0 + a1b0a0 = 0 we have a0b1a0 = 0 and (a0b1)

2 = 0. since
R is a reduced ring we get a0b1 = 0 and a1b0 = 0. Hence

a0b1 + a1b0 = b1a0 + b0a1 = 0.
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Similarly we obtain aibj = bjai = 0 and so c′k =
∑

i+j=k

bjai = 0. Then

(
n∑

i=1
bjx

j)(
m∑
i=1

aix
i) =

m+n∑
k=1

c′kx
k = 0 and hence R[x] is a reversible ring.

Definition 2.5. [12] A ring R is called a semi-commutative if ab = 0
implies aRb = 0, for any a, b ∈ R.

Proposition 2.6. [12] Every reversible ring is a semi-commutative
ring, but the reverse is not true.

Proof. Suppose that R is a reversible ring. Then ab = 0 implies
ba = 0 for any a, b ∈ R. So (ba)r = 0, for any r ∈ R and (ar)b = 0.
Thus aRb = 0, hence R is a semi-commutative ring.

Example 2.7. [12] Let R is a reduced ring. Then ring

S =


 a b c

0 a d
0 0 a

∣∣∣∣∣∣ a, b, c, d ∈ R
is a semi-commutative but it is

not reversible.

Proposition 2.8. [3] Let R is a ring, for an idempotent e ∈ R the
following conditions are equivalent:

(1) e ∈ Sl(R).
(2) 1− e ∈ Sr(R).
(3) for any x ∈ R, there have xe = exe.
(4) (1− e)Re = 0.
(5) eR is an ideal of R.
(6) eR(1− e) is an ideal of R, and eR = eR(1− e)⊕Re.

3. Main results

Definition 3.1. [7] A ring R is called an Abel ring if every idempo-
tent of ring is a central idempotent.

It is easy to verify that the commutative ring is a Abel ring, Suppose

F is a field, then a ring R =

{(
a b
0 a

)∣∣∣∣ a, b ∈ F } is also a Abel ring.

Proposition 3.2. [20] The formal matrix ring T =

(
A 0
M B

)
is

an Abel ring if and only if ring A,B are Abel rings and M = 0.
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Lemma 3.3. [11] A ring R is a semi-commutative if and only if the
following three equivalent statements hold:

(1) Any right annihilator over R is an ideal of R.
(2) Any left annihilator over R is an ideal of R.
(3) For any a, b ∈ R ab = 0 implies aRb = 0.

Theorem 3.4. Let R be a reversible ring and e is an idempotent of
ring R, then R is a Baer ring.

Proof. Let R be a reversible ring and X be a nonempty subgroup
of ring R, then R is a semi-commutative ring by Proposition 2.6. By
Lemma 3.3, rR(X) = eR, for e2 = e ∈ R. So R is a Baer ring by
Proposition 2.8.

Theorem 3.5. Let R is a Abel ring, then the following conditions
are equivalent:

(1) R is a reversible ring.
(2) R is a Baer ring.

Proof. (1)⇒(2) It is trivial by Theorem 3.4.
(2)⇒(1) For any a ∈ R, if a2 = 0, then a ∈ rR(a), since R is a Baer ring,
so there exists e = e2 ∈ R, such that a ∈ rR(a) = eR, so there exists
x ∈ R, such that a = ex. Since R is a Abel ring, then a = ex = xe, for R
is a ring with identity, then e ∈ eR, so 0 = ae = exe = e2x = ex. Hence
a = 0, so R is a reduced ring, thus R is a reversible ring by Proposition
2.2.

Note that the reverse of Theorem 3.4 is not hold and the condition of R
be a Abel ring is necessary by following example.

Example 3.6. Let R =

{(
a b
0 c

)∣∣∣∣ a, b, c ∈ F} is a ring, F is a field,

then all idempotents of R are

(
0 0
0 0

)
,

(
1 x
0 0

)
,

(
0 y
0 1

)
,

(
1 0
0 1

)
,

for any x, y ∈ F , the element of R can be expressed by the form of(
a b
0 c

)
,

(
a b
0 0

)
,

(
a 0
0 c

)
,

(
a 0
0 0

)
,

(
0 b
0 c

)
,

(
0 b
0 0

)
,

(
0 0
0 c

)
for any a, b, c ∈ F and a 6= 0, b 6= 0, c 6= 0, so

rR

((
a b
0 c

))
=

(
0 0
0 0

)
R, rR

((
a b
0 0

))
=

(
0 −a−1b
0 1

)
R,

rR

((
a 0
0 c

))
=

(
0 0
0 0

)
R, rR

((
a 0
0 0

))
=

(
0 0
0 1

)
R,

rR

((
0 b
0 c

))
=

(
1 0
0 0

)
R, rR

((
0 b
0 0

))
=

(
1 0
0 0

)
R,
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rR

((
0 0
0 c

))
=

(
0 0
0 0

)
R.

Let X be a nonempty subset of ring R, then rR(X) =
⋂

xi∈X
rR(xi), so

rR(xi ∩ xj) =

(
0 0
0 0

)
R, i 6= j = 1, 2, 3, 4, 5, 6, 7.

So R is a Baer ring.

Since

(
0 1
0 1

)(
1 1
0 0

)
= 0, but

(
1 1
0 0

)(
0 1
0 1

)
6= 0, hence R is

not a reversible ring.

Because for any r ∈ R and an idempotent

(
1 x
0 0

)
of R,

(
1 x
0 0

)
r

6= r

(
1 x
0 0

)
, so

(
1 x
0 0

)
is not a central idempotent, hence is not a Abel

ring.

Definition 3.7. Let Aut(R) denote group of ring automorphism of
R, and G be a subgroup of Aut(R). We use RG to denote a fixed ring
of R under G, i.e.,

RG = {r ∈ R|rg = r, ∀g ∈ G},

where ϕ : G→ Aut(R) is group homomorphism and for any g ∈ G and
r ∈ R, define rg = ϕ(g)(r).

It can be shown that RG is a subring of R. Suppose G = {id},
id ∈ Aut(R), then G ≤ Aut(R) and RG = R.

Definition 3.8. Let R be a ring with identity, U(R) is an unit set
of R, for a ∈ U(R) and r ∈ R a mapping σa:R → R is defined by
σa(r) = ara−1 for r ∈ R, then σa is a automorphism of R.

Let Int(R) = {σa|σa ∈ Aut(R)}, then Int(R) is a subgroup of Aut(R)
and Int(R) is called a group of Inner automorphism.

If identity mapping is only inner automorphism in G, then a subgroup
G of Aut(R) is called an Outer automorphism group.

Example 3.9. Let R be a ring, G = Int(R), ϕ : Int(R) → Aut(R),
g 7→ ϕ(g) = g, where ϕ is an identity group of endomorphism, then
RG = {r ∈ R|rg = r, ∀g ∈ G} =

{
r ∈ R|ara−1 = r, a ∈ U(R)

}
.

In fact, since ∀g ∈ Int(R) ≤ Aut(R), r ∈ R, a ∈ U(R), since ϕ is an
identity group of endomorphism, so r = rg = ϕ(g)(r) = g(r) = ara−1,
for ∀r ∈ RG, thus RG =

{
r ∈ R|ara−1 = r, a ∈ U(R)

}
.
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Definition 3.10. Let R be a ring, G is a subgroup of Aut(R), ϕ :
G → Aut(R) is a group homomorphism. Let R ∗ G = {

∑
g∈G

rgg|rg ∈ R,

for only finite rg 6= 0 }, for any
∑
g∈G

rgg,
∑
g∈G

r′gg,
∑
h∈G

rhh ∈ R ∗G, define

∑
g∈G

rgg +
∑
g∈G

r′gg =
∑
g∈G

(rg + r′g)g,

∑
g∈G

rgg

(∑
h∈G

rhh

)
=
∑
g∈G

∑
h∈G

(rgr
g−1

h )gh

there have rg
−1

h = ϕ(g−1)(rh), then R ∗ G is a ring, it is called a skew
group ring.

Lemma 3.11. [9] Let R be a simple ring, G be an Outer group of ring
automorphism of R , then R ∗ G is a simple ring; If R is a Artin ring,
then R ∗G is a Artin simple ring.

Lemma 3.12. [9] Every semisimple ring is a Baer ring and every
semisimple module is a Baer module.

Proposition 3.13. [9] Let R be a Artin simple ring, G be an Outer
group of ring automorphism of R, then RG is a Baer ring.

Theorem 3.14. Let R be a reversible ring, G be a subgroup of
Aut(R), then RG is a reversible ring.

Proof. For any a, b ∈ RG, g ∈ G, there exists ag = a, bg = b, if ab = 0
in RG, then ab = 0 in R, since R is a reversible and RG is a subring
of R. So ba = bgag = ϕ(g)(b)ϕ(g)(a) = ϕ(g)(ba) = ϕ(g)(0) = 0 in RG,
then RG is a reversible ring.

We can know that the reverse of this theorem is not hold by following
example.

Example 3.15. Let R =

{(
a b
0 c

)
|a, b, c ∈ Z2

}
, then RInt(R) is a

reversible ring, but R is not a reversible ring.

As a matter of fact, since U(R) =

{(
1 0
0 1

)
,

(
1 1
0 1

)}
, so Int(R) ={

f( 1 0
0 1 ), f( 1 1

0 1 )

}
. For every

(
a b
0 c

)
∈ R, since

(
1 1
0 1

)−1
=

(
1 1
0 1

)
.
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So

(
1 1
0 1

)(
a b
0 c

)(
1 1
0 1

)−1
=

(
a b
0 c

)
, thus a+b+c = b, that

is a = c.

Since
{
r ∈ R

∣∣∣f( 1 0
0 1 ) (r) = r

}
= R, so

RInt(R) = {r ∈ R|rg = r, ∀ g ∈ Int(R)}

=
{
r ∈ R

∣∣∣f( 1 0
0 1 ) (r) = r, f( 1 1

0 1 )(r) = r
}

=
{
r ∈ R

∣∣∣f( 1 0
0 1 ) (r) = r

}
∩
{
r ∈ R

∣∣∣f( 1 1
0 1 )(r) = r

}
= R ∩

{(
a b
0 a

)∣∣∣∣ a, b ∈ Z2

}
=

{(
a b
0 a

)∣∣∣∣ a, b ∈ Z2

}
.

So RInt(R) is a reversible ring. But R is not a reversible ring.

Because

(
0 1
0 1

)(
1 0
0 0

)
=

(
0 0
0 0

)
but

(
1 0
0 0

)(
0 1
0 1

)
=

(
0 1
0 0

)
.

Theorem 3.16. Let R be a reversible Artin simple ring, G is an Outer
group of ring automorphism of R, then RG is a Baer ring, Moreover, RG is a
reversible ring.

Proof. Since R is a Artin simple ring, G is an Outer group of ring automor-
phism of R, so RG is a Baer ring by Proposition 3.13, since R is a reversible
ring, G ≤ Aut(R). So RG is a reversible ring by Theorem 3.14.

Proposition 3.17. Let R be a ring with identity and G is a group of ring
automorphism of R, then G is a subgroup of U(R ∗G), under the meaning of
isomorphism.

Proof. Let H = {1R g | ∀g ∈ G}, then H ≤ U(R ∗ G). In fact, since
1R 1G ∈ H, so H is a nonempty subset, (1R g1)(1R g2)−1 = (1R g1)(1R g

−1
2 ) =

1R 1
g−1
1

R g1 g
−1
2 = 1R (g1 ·g−12 ) ∈ H, for ∀ 1R g1, 1R g2 ∈ H. So H is a subgroup of

U(R ∗G). Let f : G→ H, g 7→ 1R · g, that is f(g) = 1R · g, so f is bijection by

G → H. For ∀g1, g2 ∈ G, f(g1g2) = 1R(g1g2) = 1R 1R (g1g2) = 1R 1
g−1
1

R (g1g2)
= (1R g1) (1R g2) = f(g1) f(g2). So f is isomorphism by G→ H. Hence G is a
subgroup of U(R ∗G).

Theorem 3.18. Let R be a simple ring, G is an Outer group of ring auto-
morphism of R, then R ∗G is a Baer ring.

Proof. Suppose R be a simple ring, G is an Outer group of ring automor-
phism of R, then R ∗G is a simple ring by Lemma 3.11, since R is a ring with
identity, so R is a semisimple ring, thus R∗G is a Baer ring by Lemma 3.12.
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Definition 3.19. [8] Let R be a semiprime ring. For g ∈ Aut(R), Let
φg = {x ∈ Qr(R)|xrg = rx, for each r ∈ R}, where Qr(R) is a Martindale
right ring of quotients of R (see [13] for more on Qr(R)). We say that g is
X-outer if φg = 0.

A subgroup G of Aut(R) is called X-outer on R if every 1 6= g ∈ G is X-outer.

Lemma 3.20. [18] Let R be a semiprime ring, G is a X-outer group of ring
automorphism of R.

(1) If R is a simple ring, then R ∗G is a simple ring.
(2) If R is primitive and G is finite, then R ∗G is primitive.
(3) If R is a semisimple ring and G is finite, then R ∗G is a semisimple.

Theorem 3.21. Let R be a semiprime ring, G is a X-outer group of ring
automorphism of R, if R is a simple ring, then R ∗G is a Baer ring.

Proof. Let R be a semiprime ring, G is a X-outer group of ring automor-
phism of R, since R be a simple ring, then R ∗ G is a simple ring by Lemma
3.20(1), since R ∗G is a ring with identity, so R ∗G is a semisimple ring, thus
R ∗G is a Baer ring by Lemma 3.12.

Above Theorem proved Baerness of a skew group ring R ∗ G. For fixed ring
RG, we construct a skew group ring RG ∗ G, then it is a ring under addition
and multiplication of a skew group ring.

Theorem 3.22. Let R be a reversible ring, G is a subgroup of ring auto-
morphism of R, then skew group ring RG ∗G is a reversible ring.

Proof. Suppose that

(∑
g∈G

rgg

)( ∑
h∈G

rhh

)
=
∑
g∈G

∑
h∈G

(rgr
g−1

h )gh =∑
g∈G

∑
h∈G

(0RG)gh,for any
∑
g∈G

rgg,
∑
h∈G

rhh ∈ RG ∗G, rg, rh ∈ RG, then rgr
g−1

h =

0RG , rgrh = 0RG , since R is a reversible ring, then RG is a reversible ring by

Theorem 3.14, so rhrg = 0RG , rhr
h−1

g = 0RG , so

( ∑
h∈G

rhh

)(∑
g∈G

rgg

)
=∑

h∈G

∑
g∈G

(rhr
h−1

g )hg =
∑
h∈G

∑
g∈G

(0RG)hg. Thus RG ∗G is a reversible ring.

We show that reverse of Theorem 3.22 is not hold by using following example.

Example 3.23. Let S be a reversible ring, G = Aut(R), R = S × S with
addition and multiplication as follows: (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),
(a1, b1) · (a2, b2) = (a1a2, b1b2), for any a1, a2, b1, b2 ∈ S, then R is a ring,
moreover R is a reversible ring, but RG ∗G is not a reversible.

In fact, assume (a1, b1)·(a2, b2) = (a1a2, b1b2) = (0, 0), for any a1, a2, b1, b2 ∈
S, then a1a2 = 0 and b1b2 = 0, since S is a reversible ring, so a2a1 = 0, b2b1 = 0,
then (a2, b2) · (a1, b1) = (a2a1, b2b1) = (0, 0), thus R is a reversible ring.
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However, assume for any
∑
g∈G

(a, 0)g,
∑
h∈G

(0, b)h ∈ RG ∗G,

(∑
g∈G

(a, 0)g

)
( ∑

h∈G
(0, b)h

)
=
∑
g∈G

∑
h∈G

(a, 0)(0, b)g
−1

gh =
∑
g∈G

∑
h∈G

(a, 0)(0, b)gh =
∑
g∈G∑

h∈G
(0s, 0s)gh = 0,but

( ∑
h∈G

(0, b)h

)(∑
g∈G

(a, 0)g

)
=
∑
h∈G

∑
g∈G

(0, b)(a, 0)
h−1

hg=
∑
h∈G

∑
g∈G

(0, b)(0, a)hg, =
∑
h∈G

∑
g∈G

(0, ba)hg, if ba 6= 0, then
∑
h∈G

∑
g∈G

(0, ba)

hg 6= 0, so RG ∗G is not a reversible.
Morita Context theory is one of most important theory for research of ring.

Matrix ring Morita Context ring (R, V,W, S, ψ, φ) is an algebraic structure
which six in one.

Definition 3.24. Let R and S are rings, V =R VS and W =S WR two
bimodules with bimodule map ϕ: W ⊗R V −→ S and map ψ: V ⊗S W −→ R,
given by ϕ (w, v)w′ = wψ (v, w′) , ψ (v, w) v′ = vϕ (w, v′) , for any v, v′ ∈ V and
w,w′ ∈W .

Let C =

(
R V
W S

)
=

{(
r v
w s

)
|r ∈ R, s ∈ S, v ∈ V,w ∈W

}
, Define ad-

dition of matrix for C, and multiplication as follows:(
r v
w s

)(
r′ v′

w′ s′

)
=

(
rr′ + ψ(v, w′) rv′ + vs′

wr′ + sw′ ϕ(w, v′) + ss′

)
, Then C is a

ring and called Morita context ring.

From reference [15] we can get condition of Morita Context ring become a
Baer ring.

Theorem 3.25. [15] Let C =

(
R V
W S

)
be a Morita context ring, if

ψ = 0, φ = 0 and V f = V , We = W for any e2 = e ∈ R and f2 = f ∈ S, then
C is a Baer ring if and only if R and S are Baer rings, and V = 0, W = 0.

Theorem 3.26. [15] Let C =

(
R V
W S

)
be a Morita context ring, if

ψ = 0, φ = 0 and V f = V , We = W for any e2 = e ∈ R and f2 = f ∈ S, then
C is a quasi-Baer ring if and only if R and S are quasi-Baer rings, and V = 0,
W = 0.

Theorem 3.27. [15] Let R and S are rings, V =R VS and W =S WR are

bimodules. If C =

(
R V
W S

)
is a Morita context ring, then C is a right

principally quasi-Baer ring if and only if the following conditions hold:

(1) R and S are right principally quasi-Baer rings.
(2) For any a ∈ R, b ∈ S, m ∈ V , n ∈ W , there exists e2 = e ∈ R,

f2 = f ∈ S, k ∈ V , g ∈ W , such that ek + kf = k, ge + fg = g,
e ∈ rR(nR+ bW + bSg), f ∈ rS(aRk + aV +mS).
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(3) For any x ∈ R, y ∈ V, p ∈ W, q ∈ S, if aRx = 0, bSq = 0, nRx+ bWx+
bSp = 0, aRy + aV q + mSq = 0, then x ∈ eR, q ∈ fS, y ∈ eV + kS,
p ∈ gR+ fW .

So we conclude that Morita Context ring have Baer property.

Theorem 3.28. Let R and S are rings, V =R VS and W =S WR are
bimodules and ψ = 0, ϕ = 0, then the following conditions are equivalent:

(1) R and S are reversible rings.

(2) Morita context ring C =

{(
r v
w s

)
|r ∈ R, s ∈ S, v ∈ V,w ∈W

}
is a

reversible ring.

Proof. (1)=⇒(2);

If

(
r1 v1
w1 s1

)(
r2 v2
w2 s2

)
=

(
r1r2 + ψ(v1, w2) r1v2 + v1s2
w1r2 + s1w2 ϕ(w1, v2) + s1s2

)
=

(
r1r2 r1v2 + v1s2

w1r2 + s1w2 s1s2

)
= 0, for any

(
r1 v1
w1 s1

)
,

(
r2 v2
w2 s2

)
∈

C, then r1r2 = 0, r1v2 + v1s2 = 0, w1r2 + s1w2 = 0, s1s2 = 0. Since R and
S are reversible rings, so r2r1 = 0, s2s1 = 0. Because r1v2 + v1s2 = 0, so
r1v2s1 + v1s2s1 = 0, that is r1v2s1 = 0, by w1r2 + s1w2 = 0. So w1r2r1 +

s1w2r1 = 0, thus s1w2r1 = 0. Otherwise, assume

(
r2 v2
w2 s2

)(
r1 v1
w1 s1

)
=(

r2r1 + ψ(r2, w1) r2v1 + v2s1
w2r1 + s2w1 ϕ(w2, v1) + s2s1

)
=

(
r2r1 r2v1 + v2s1

w2r1 + s2w1 s2s1

)
6=

0,then r2r1 6= 0, s2s1 6= 0, r2v1+v2s1 6= 0, w2r1+s2w1 6= 0, so r1r2v1+r1v2s1 6=
0, s1w2r1 + s1s2w1 6= 0, but r1r2 = 0, s1s2 = 0, s1w2r1 6= 0 and r1v2s1 6= 0,
contradiction.

Hence

(
r2 v2
w2 s2

)(
r1 v1
w1 s1

)
=

(
r2r1 r2v1 + v2s1

w2r1 + s2w1 s2s1

)
= 0.

thus Morita context ring C =

(
R V
W S

)
is a reversible ring.

(2)=⇒(1);

Since C =

(
R V
W S

)
=

{(
r v
w s

)∣∣∣∣ r ∈ R, s ∈ S , v ∈ V,w ∈W} is a re-

versible ring.

Assume

(
r1 v1
w1 s1

)(
r2 v2
w2 s2

)
=

(
r1r2 + ψ(v1, w2) r1v2 + v1s2
w1r2 + s1w2 ϕ(w1, v2) + s1s2

)
=

(
r1r2 r1v2 + v1s2

w1r2 + s1w2 s1s2

)
= 0, for any

(
r1 v1
w1 s1

)
,

(
r2 v2
w2 s2

)
∈

C, then

(
r2 v2
w2 s2

)(
r1 v1
w1 s1

)
=

(
r2r1 r2v1 + v2s1

w2r1 + s2w1 s2s1

)
= 0, that

is r2r1 = 0, s2s1 = 0, since r1r2 = 0, s1s2 = 0. Hence R and S are reversible
rings.
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