DOI QR코드

DOI QR Code

탄화온도별로 제조된 거대억새 세라믹의 비파괴 휨강도 평가

Nondestructive Bending Strength Evaluation of Miscanthus sinensis var. purpurascens Ceramics Made from Different Carbonizing Temperatures

  • 원경록 (경상대학교 농업생명과학대학 농업생명과학연구원) ;
  • 오승원 (전북대학교 목재응용과학과) ;
  • 변희섭 (경상대학교 농업생명과학대학 농업생명과학연구원)
  • Won, Kyung-Rok (College of Agriculture & Life Science, IALS, Gyeongsang National University) ;
  • Oh, Seung-Won (Department of Wood Science and Technology, Chonbuk National University) ;
  • Byeon, Hee-Seop (College of Agriculture & Life Science, IALS, Gyeongsang National University)
  • 투고 : 2014.04.07
  • 심사 : 2014.06.02
  • 발행 : 2014.11.25

초록

공진주파수 모드를 이용하는 비파괴 평가기술법을 거대억새 파티클 보드를 페놀수지로 함침한 후 탄화온도별(600, 800, 1000, $1200^{\circ}C$)로 제조한 세라믹에 적용하였다. 동적 탄성계수와 정적 휨 탄성계수는 탄화온도가 증가할수록 증가하였다. 휨 강도에 대한 동적 탄성계수 및 정적 휨 탄성계수는 밀접한 상관관계를 나타내었다. 그러나 휨 강도에 대한 상관관계에서 정적 탄성계수 보다 동적 탄성계수가 더 밀접한 상관관계를 나타내었다. 따라서 공진 주파수 모드를 사용하는 동적 탄성계수측정법으로 소성온도에 따라 제조된 거대억대 파티클보드의 휨 강도를 예측하는 비파괴 평가 방법으로 유용할 것으로 판단된다.

Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for ceramics made by different carbonizing temperatures (600, 800, 1000, $1200^{\circ}C$) after impregnating the phenol resin with Miscanthus sinensis var. purpurascen particle boards. Dynamic modulus of elasticity increased with increasing carbonizing temperature. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient was higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made by different carbonizing temperature for Miscanthus sinensis var. purpurascens particle boards.

키워드

참고문헌

  1. Byeon, H.-S., Ahn, S.-Y., Oh, S.-W., Piao, J.-J. 2004. Nondestructive bending strength evaluation of woodceramics using resonance Frequency Mode. Journal of The Korean Wood Science and Technology 32(3): 8-14.
  2. Byeon, H.-S., Hwag, K.-K., Lee, D.-H., Hwang, J.-W., Oh, S.-W. 2010. Properties of Woodceramics Made from Broussonetia kazinoki Sieb. -Effect of Carbonization Temperature-.Journal of Agriculture & Life Science 44(4): 21-27.
  3. Byeon, H.-S., Kim, J.-M., Won, K.-R., Oh, S.-W. 2011. Nondestructive Bending Strength Evaluation of Woodceramics Made from Woody Part of Broussonetia kazinoki Sieb. -Effect of Carbonization Temperature-. Journal of Agriculture & Life Science 46(1): 398-405.
  4. Byeon, H.-S., Kim, J.-M., Won, K.-R., Oh, S.-W. 2011. Nondestructive Bending Strength Evaluation of Woodceramics Made from Woody Part of Broussonetia kazinoki Sieb. -Effect of Resin Impregnation Ratio-. Journal of The Korean Wood Science and Technology 39(5): 398-405. https://doi.org/10.5658/WOOD.2011.39.5.398
  5. Cha, J.-K. 1996. Study on Stress Waves for Development of Glulam from Domestic Small Diameter Log (I) - Effect of MC on Stress Wave in Glulam Member -. Journal of The Korean Wood Science and Technology 24(3): 90-100.
  6. Gerhards, C.C. 1974. Stress wave speed and MOE of sweetgum ranging from 150 to 15 percent MC. Forest Products Journal 25: 51-57.
  7. Hong, B.-W., Byeon, H.-S. 1995. Dynamic MOE and Internal Friction of Compression Woods in Pinus densiflora. Journal of The Korean Wood Science and Technology 23(2): 32-36.
  8. Jang, S.-S. 2000. Evaluation of lumber properties by applying stress waves to larch logs grown in Korea. Forest Products Journal 50: 44-48.
  9. Lee, J.-J., Kim, K.-C., Bae, M.-S. 2001. Studies on the safety assessment of the wooden ancient buildings-The qualitative evaluation of deterioration used by ultrasonic methods for wooden ancient buildings. In: Proc. The Korean society of wood science and technology annual meeting. pp. 36-42.
  10. Okabe, T. 1996. Wood-based porous carbon materials Woodceramics. Uchida Rokakuho Publishing Co., LTD. JAPAN.
  11. Park, H.-M., Byeon, H.-S. 2006. Measurement of dynamic MOE of 3-ply woods by flexural vibration and comparison with bending strength and creep performances. Journal of The Korean Wood Science and Technology 34(2): 46-57.
  12. Park, J.-C. Hong, S.-I. 2009. The Practice of Bending Deflection Using Non-destructive MOE of Glulam. Journal of The Korean Wood Science and Technology 37(1): 48-55.
  13. Ross, R.J., Ward, J.C., Tenwolde, A. 1994. Stress wave nondestructive evaluation of wet wood. Forest Products Journal 44: 79-83.
  14. Ross, R.J., McDonald, K.A., Green, D.W., Schad, K.C. 1997. Relationship between log and lumber modulus of elasticity. Forest Products Journal 47: 89-92.
  15. Ross, R.J., Degroot, R.C., Nelson, W.J., Lebow, P.K. 1997. The relationship between stress wave transmission characteristics and the compressive strength of biologically degraded wood. Forest Products Journal 47: 89-93.
  16. Won, K.-R., Hong, N.-E., Kang, S.-U., Byeon, H.-S. 2013. Nondestructive Evaluation of Strength Property for Heat-Treated Wood Using Free Vibration Mode. Journal of Agriculture & Life Science 47(4): 189-196.
  17. Won, K.-R., Yoo, B.-O., Lee, K.-S., Jung, S.-Y., Chong, S.-H., Byeon, H.-S. 2013. Nondestructive Evaluation of Strength Property for Damaged Black Pine Wood (Pinus thunbergii ) by Matsucoccus thunbergianae Using Free Vibration Mode. Journal of Agriculture & Life Science 47(6): 53-59. https://doi.org/10.14397/jals.2013.47.6.53
  18. Won, K.-R., Chong, S.-H., Hong, N.-E., Kang, S.-U., Byeon, H.-S. 2013. Nondestructive Evaluation of Strength Performance for Heat-Treated Wood Using Impact Hammer & Transducer. Journal of The Korean Wood Science and Technology 41(5): 466-473. https://doi.org/10.5658/WOOD.2013.41.5.466