DOI QR코드

DOI QR Code

Thermal Stability of Polypropylene-Based Wood Plastic Composites by The Addition of Ammonium Polyphosphate

폴리인산염 첨가에 의한 폴리프로필렌 기반의 Wood Plastic Composites 열안정성

  • Chun, Sang-Jin (Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, Sun-Young (Department of Forest Products, Korea Forest Research Institute)
  • 전상진 (국립산림과학원 임산공학부) ;
  • 이선영 (국립산림과학원 임산공학부)
  • Received : 2014.05.07
  • Accepted : 2014.06.18
  • Published : 2014.11.25

Abstract

In order to improve the thermal stability of wood plastic composites (WPC), thermal degradation behavior of WPC in this study was investigated by the addition of wood flour and fire retardant after hybridization of wood flour and ammonium polyphosphate (APP) into polypropylene (PP) matrix. Thermal degradation behavior of all formulations was analyzed with thermogravimetric analyzer under nitrogen environment at heating rate of $10^{\circ}C/min$. As the thermal degradation temperature of wood flour is lower than that of PP, char layer formed by the wood flour decreases the speed of heat transfer to PP. In addition, the char layer increases the 2nd thermal degradation temperature and decreases the 2nd thermal degradation speed. The WPC treated with APP increases the 1st and 2nd degradation temperatures. In the case of WPC with high loading level of wood flour, the 1st thermal degradation temperature and 2nd thermal degradation rate were increased by the addition of APP, and then the amount of remnants at high temperature was increased by the increase of the APP loading level. In the case of WPC treated with APP, the amount of the remnants at high temperature was increased with the increase of wood flour content from 10 wt% to 50 wt%, indicating that char formation of the APP and wood flour occurred at the same time, resulting in high thermal stability effect by the increase of wood flour content.

본 연구에서는 WPC의 열안정성을 향상시키기 위해 폴리프로펠렌 매트릭스에 목분과 폴리인산염(ammonium polyphosphate, APP)의 삼종혼합 후, 목분과 난연제 첨가에 따른 목재플라스틱 복합재(wood plastic composites, WPC)의 열분해 거동이 조사되었다. 모든 배합비의 WPC 열분해 거동은 질소의 환경에서 분당 $10^{\circ}C$ 상승속도로 제어하여 열중량분석기(Thermogravimetric analyzer)를 통해 분석하였다. 목분의 열분해온도가 PP의 열분해온도 보다 낮기 때문에 목분에 의해 생성된 char막은 PP로의 열전달 속도를 낮추며, 2차 열분해온도 증가 및 열분해속도를 늦춘다. APP를 첨가한 WPC의 경우 1차 열분해온도 감소 및 2차 열분해온도의 증가를 보여준다. 목분의 함량이 높은 WPC의 경우, APP 첨가 시 1차 열분해온도 감소 및 2차 열분해속도가 증가하였고, 고온에서 잔여물의 양은 APP 함량이 증가할수록 크게 증가하였다. APP가 첨가된 WPC 경우, 목분의 함량이 10 wt%에서 50 wt%로 증가 시 고온에서 잔여물 양이 증가하였는데, 이는 APP 및 목질섬유의 char화가 동시에 발생되기 때문으로 보이며 결과적으로 목분 함량이 증가할수록 APP의 효과가 높게 나타나 열안정 효과를 관찰할 수 있었다.

Keywords

References

  1. Baker, M.B., Ishak, Z.A., Taib, R.M., Rozman, H.D., Jani, S.M. 2010. Flammability and mechanical properties of wood flour-filled polypropylene composites. Journal of Applied Polymer Science. 116: 2714-2722.
  2. Dai, K., Song, L., Jiang, S., Yu, B., Yang, W., Yuen, R., Hu, Y. 2013. Unsaturated polyester resins modified with phosphorous-containing groups: effects on thermal properties and flammability. Polymer Degradation and Stability. 98: 2033-2040. https://doi.org/10.1016/j.polymdegradstab.2013.07.008
  3. Faruk, O., Bledzki, L.A., Matuana., L.M. 2007. Microcellular foamed Wood-Plastic Composites by different processes: A review. Macromolecular Materials and Engineering. 292: 113-127. https://doi.org/10.1002/mame.200600406
  4. Feng, C., Zhang, Y., Liu, S., Chi, Z., Xu, J. 2012. Synthesis of novel triazine charring agent and its effect in intumescent flame-retardant polypropylene. Journal of Applied Polymer Science. 123: 3208-3216. https://doi.org/10.1002/app.34993
  5. Gwon, J.G., Lee, S.Y., Kang, H.C., Kim, J.H. 2012. Effects of sizes and contents of exothermic foaming agent on physical properties of injection foamed wood fiber/HDPE composites. International Journal of Precision Engineering and Manufacturing. 13(6): 1003-1007. https://doi.org/10.1007/s12541-012-0130-3
  6. Huang, R., Xiong, W., Xu, X., Wu, Q. 2012. Thermal expansion behavior of co-extruded wood plastic composites with glass-fiber reinforced shells. Bioresources. 7(4): 5514-5526.
  7. Huang, R., Kim, B.J., Lee, S.Y., Yang, Z., Wu, Q. 2013. Co-extruded wood plastic composites with talc-filled shells: morphology, mechanical and thernal expansion performance. Bioresources. 8(2): 2283-2299.
  8. Kang, I.A., Lee, S.Y., Doh, G.H., Chun, S.J., Yoon, S.L. 2009. Mechanical properties of wood flourpolypropylene composites: effects of wood species, filler particle size and coupling agent. Journal of The Korean Wood Science and Technology. 37(6): 505-516.
  9. Kang, I.A., Lee, S.Y., Doh, G.H., Chun, S.J., Yoon, S.L. 2010. Water absorption of wood flour-polypropylene composites: effects of wood species, filler particle size and coupling agent. Journal of The Korean Wood Science and Technology. 38(4): 298-305. https://doi.org/10.5658/WOOD.2010.38.4.298
  10. Karian, H.G. 2004. Handbook of polypropylene and polypropylene composites. Marcel Dekker, Inc, New York. p. 741.
  11. Klyosov, A.A. 2007. Wood Plastic Composites. John Wiley & Sons, Inc. p. 698.
  12. Lee, S.Y. 2009. Color change and tensile properties of wood flour reinforced polypropylene composites: influence of photostabilizer. Journal of Korea Oil Chemist's Society. 26(2): 171-178.
  13. Lee, S.Y., Yang, H.S., Kim, H.J., Jeong, C.S., Lim, B.S., Lee, J.N. 2004. Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Composite Structures. 65: 459-469. https://doi.org/10.1016/j.compstruct.2003.12.007
  14. Lee, S.Y., Chun, S.J., Doh, G.H., Kang, I.A., Lee, S., Park, K.H. 2009. Influence of chemical modification of filler loading on fundamental properties of bamboo fibers reinforced polypropylene composites. Journal of Composite Materials. 43: 1639-1657. https://doi.org/10.1177/0021998309339352
  15. Lee, S.Y., Kang, I.A., Park, B.S., Doh, G.H., Park, B.D. 2009. Effect of filler and coupling agent on the properties of bamboo fiber reinforced polypropylene composites. Journal of Reinforced Plastics and Composites. 28(21): 2589-2604. https://doi.org/10.1177/0731684408094070
  16. Li, B., He, J. 2004. Investigation of mechanical property, flame retardancy and thermal degradation of LLDPE-wood fibre composites. Polymer Degradation and Stability. 83: 241-246. https://doi.org/10.1016/S0141-3910(03)00268-4
  17. Liu, P., Liu, M., Gao, C., Wang, F., Ding, Y., Wen, B., Zhang, S., Yang, M. 2013. Preparation, characterization and properties of a halogen-gree phosphorous flame-retarded poly (butylene terephthalate) composite based on a DOPO derivative. Journal of Applied Polymer Science. 30: 1301-1307.
  18. Schlechter, M. 2004. Plastic wood: Technologies, Market, Business Communications Co., Inc., U.S.A. p. 180.
  19. Seefeldt, H., Braun, U. 2012. Burning behavior of wood plastic composite decking boards in end-use conditions: the effects of geometry, material composition, and moisture. Journal of Fire Science. 30: 41-51. https://doi.org/10.1177/0734904111423488
  20. Stark, N.M., Matuana, L.M. 2006. Influence of photostabilizers on wood flour-HDPE composites exposed to xenon-arc radiation with and without water spray. Polymer Degradation and Stability. 91: 3048-3056. https://doi.org/10.1016/j.polymdegradstab.2006.08.003
  21. Qu, H., Wu, W., Wu, H., Jiao, Y., Xu, J. 2011. Thermal degradation and fire performance of wood treated with various inorganic salts. Journal of Fire and Materials. 35(8): 569-576. https://doi.org/10.1002/fam.1075

Cited by

  1. Manufacturing a Porous Structure According to the Process Parameters of Functional 3D Porous Polymer Printing Technology Based on a Chemical Blowing Agent vol.229, 2017, https://doi.org/10.1088/1757-899X/229/1/012027