References
- Ben-Baruch A (2006). The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev, 25, 357-71. https://doi.org/10.1007/s10555-006-9003-5
- Bernardi R, Guernah I, Jin D, et al (2006). PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature, 442, 779-85. https://doi.org/10.1038/nature05029
- Bernardi R, Pandolfi PP (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol, 8, 1006-16. https://doi.org/10.1038/nrm2277
- Best JL, Ganiatsas S, Agarwal S, et al (2002). SUMO-1 protease-1 regulates gene transcription through PML. Mol Cell, 10, 843-55. https://doi.org/10.1016/S1097-2765(02)00699-8
- Bischof O, Kirsh O, Pearson M, et al (2002). Deconstructing PML-induced premature senescence. Embo J, 21, 3358-69. https://doi.org/10.1093/emboj/cdf341
- Carbone R, Pearson M, Minucci S, et al (2002). PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene, 21, 1633-40. https://doi.org/10.1038/sj.onc.1205227
- Carracedo A, Weiss D, Leliaert AK, et al (2012). A metabolic prosurvival role for< i> PML in breast cancer. J clin Invest, 122, 3088-100. https://doi.org/10.1172/JCI62129
- Chang CC, Naik MT, Huang YS, et al (2011). Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol Cell, 42, 62-74. https://doi.org/10.1016/j.molcel.2011.02.022
- Chelbi-Alix M, Pelicano L, Quignon F, et al (1995). Induction of the PML protein by interferons in normal and APL cells. Leukemia, 9, 2027-33.
- Chen RH, Lee YR, Yuan WC (2012). The role of PML ubiquitination in human malignancies. J Biomed Sci, 19, 81. https://doi.org/10.1186/1423-0127-19-81
- Cooke HJ, Smith BA (1986). Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb Symp Quant Biol, 51, 213-9. https://doi.org/10.1101/SQB.1986.051.01.026
- Cuchet-Lourenco D, Vanni E, Glass M, et al (2012). Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation. J Virol, 86, 11209-22. https://doi.org/10.1128/JVI.01145-12
- de Stanchina E, Querido E, Narita M, et al (2004). PML is a direct p53 target that modulates p53 effector functions. Molecular cell, 13, 523-35. https://doi.org/10.1016/S1097-2765(04)00062-0
- de The H CC, Lanotte M, Degos L, Dejean A (1990). The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Natur, 347, 558-61. https://doi.org/10.1038/347558a0
- de Visser KE, Coussens LM (2006). The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol, 13, 118-37.
- Dellaire G, Ching RW, Ahmed K, et al (2006b). Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR. J Cell Biol, 175, 55-66. https://doi.org/10.1083/jcb.200604009
- Dermime S, Bertazzoli C, Marchesi E, et al (1996). Lack of T-cell-mediated recognition of the fusion region of the pml/RAR-alpha hybrid protein by lymphocytes of acute promyelocytic leukemia patients. Clin Cancer Res, 2, 593-600.
- Dyck JA, Maul GG, Miller WH, Jr., et al (1994). A novel macromolecular structure is a target of the promyelocyteretinoic acid receptor oncoprotein. Cell, 76, 333-43. https://doi.org/10.1016/0092-8674(94)90340-9
- Everett RD (2001). DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene, 20, 7266-73. https://doi.org/10.1038/sj.onc.1204759
- Fanelli M, Fantozzi A, De Luca P, et al (2004). The coiledcoil domain is the structural determinant for mammalian homologues of Drosophila Sina-mediated degradation of promyelocytic leukemia protein and other tripartite motif proteins by the proteasome. J Biol Chem, 279, 5374-9. https://doi.org/10.1074/jbc.M306407200
- Gamell C, Jan Paul P, Haupt Y, et al (2014). PML tumour suppression and beyond: Therapeutic implications. FEBS Lett.
- Geoffroy MC, Jaffray EG, Walker KJ, et al (2010). Arsenicinduced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol Biol Cell, 21, 4227-39. https://doi.org/10.1091/mbc.E10-05-0449
- Ghafouri-Fard S, Ghafouri-Fard S (2012a). Immunotherapy in nonmelanoma skin cancer. Immunotherapy, 4, 499-510. https://doi.org/10.2217/imt.12.29
- Ghafouri-Fard S, Ghafouri-Fard S (2012b). siRNA and cancer immunotherapy. Immunotherapy, 4, 907-17. https://doi.org/10.2217/imt.12.87
- Ghafouri-Fard S, Modarressi MH, Yazarloo F (2012). Expression of testis-specific genes, TEX101 and ODF4, in chronic myeloid leukemia and evaluation of TEX101 immunogenicity. Ann. Saudi Med, 32, 256-61.
- Ghafouri-Fard S, Shamsi R, Seifi-Alan M, et al (2014). Cancertestis genes as candidates for immunotherapy in breast cancer. Immunotherapy, 6, 165-79. https://doi.org/10.2217/imt.13.165
- Guan D, Factor D, Liu Y, et al (2013). The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein. Oncogene, 32, 3819-28. https://doi.org/10.1038/onc.2012.406
- Guo A, Salomoni P, Luo J, et al (2000). The function of PML in p53-dependent apoptosis. Nat Cell Biol, 2, 730-6. https://doi.org/10.1038/35036365
- Gurrieri C, Capodieci P, Bernardi R, et al (2004). Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst, 96, 269-79. https://doi.org/10.1093/jnci/djh043
- Hattersley N, Shen L, Jaffray EG, et al (2011). The SUMO protease SENP6 is a direct regulator of PML nuclear bodies. Mol Biol Cell, 22, 78-90. https://doi.org/10.1091/mbc.E10-06-0504
- Hubackova S, Krejcikova K, Bartek J, et al (2012). Interleukin 6 signaling regulates promyelocytic leukemia protein gene expression in human normal and cancer cells. J Biol Chem, 287, 26702-14. https://doi.org/10.1074/jbc.M111.316869
- Ishov AM, Sotnikov AG, Negorev D, et al (1999). PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol, 147, 221-34. https://doi.org/10.1083/jcb.147.2.221
- Ito K, Bernardi R, Morotti A, et al (2008). PML targeting eradicates quiescent leukaemia-initiating cells. Nature, 453, 1072-8. https://doi.org/10.1038/nature07016
- Jensen K, Shiels C, Freemont PS (2001). PML protein isoforms and the RBCC/TRIM motif. Oncogene, 20, 7223-33. https://doi.org/10.1038/sj.onc.1204765
- Jin G, Wang Y-J, Lin H-K (2013). Emerging cellular functions of cytoplasmic PML. Frontiers in oncology, 3, 147.
- Kakizuka A, Miller WH, Jr., Umesono K, et al (1991). Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell, 66, 663-74. https://doi.org/10.1016/0092-8674(91)90112-C
- Kamitani T, Kito K, Nguyen HP, et al (1998). Identification of three major sentrinization sites in PML. J Biol Chem, 273, 26675-82. https://doi.org/10.1074/jbc.273.41.26675
- Kim HJ, Song DE, Lim SY, et al (2011). Loss of the promyelocytic leukemia protein in gastric cancer: implications for IP-10 expression and tumor-infiltrating lymphocytes. PLoS One, 6, 26264. https://doi.org/10.1371/journal.pone.0026264
- Koken MH, Puvion-Dutilleul F, Guillemin MC, et al (1994). The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. Embo J, 13, 1073-83.
- Lallemand-Breitenbach V, de The H (2010). PML nuclear bodies. Cold Spring Harb Perspect Biol, 2, 000661. https://doi.org/10.1101/cshperspect.a000661
- Lallemand-Breitenbach V, Jeanne M, Benhenda S, et al (2008). Arsenic degrades PML or PML-RARalpha through a SUMOtriggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol, 10, 547-55. https://doi.org/10.1038/ncb1717
- Lee EY, Lee ZH, Song YW (2009). CXCL10 and autoimmune diseases. Autoimmun Rev, 8, 379-83. https://doi.org/10.1016/j.autrev.2008.12.002
- Lee HE, Jee CD, Kim MA, et al (2007). Loss of promyelocytic leukemia protein in human gastric cancers. Cancer letters, 247, 103-9. https://doi.org/10.1016/j.canlet.2006.03.034
-
Lin H-K, Bergmann S, Pandolfi PP (2004). Cytoplasmic PML function in TGF-
${\beta}$ signalling. Nature, 431, 205-11. https://doi.org/10.1038/nature02783 - Maarifi G, Chelbi-Alix MK, Nisole S (2014). PML control of cytokine signaling. Cytokine Growth Factor Rev.
- Maiuri MC, Tasdemir E, Criollo A, et al (2009). Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ, 16, 87-93. https://doi.org/10.1038/cdd.2008.131
- Mallette FA, Goumard S, Gaumont-Leclerc MF, et al (2004). Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene, 23, 91-9. https://doi.org/10.1038/sj.onc.1206886
- Martin N, Benhamed M, Nacerddine K, et al (2012). Physical and functional interaction between PML and TBX2 in the establishment of cellular senescence. Embo J, 31, 95-109. https://doi.org/10.1038/emboj.2011.370
- Mazza M, Pelicci PG (2013). Is PML a Tumor Suppressor? Front Oncol, 3, 174.
- Meyerson M, Counter CM, Eaton EN, et al (1997). hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 90, 785-95. https://doi.org/10.1016/S0092-8674(00)80538-3
- Nakamura TM, Morin GB, Chapman KB, et al (1997). Telomerase catalytic subunit homologs from fission yeast and human. Science, 277, 955-9. https://doi.org/10.1126/science.277.5328.955
- Nicewonger J, Suck G, Bloch D, et al (2004). Epstein-Barr virus (EBV) SM protein induces and recruits cellular Sp110b to stabilize mRNAs and enhance EBV lytic gene expression. J Virol, 78, 9412-22. https://doi.org/10.1128/JVI.78.17.9412-9422.2004
- Nisole S, Maroui MA, Mascle XH, et al (2013). Differential Roles of PML Isoforms. Front Oncol, 3, 125.
- Osman Y, Takahashi M, Zheng Z, et al (1999). Dendritic cells stimulate the expansion of PML-RAR alpha specific cytotoxic T-lymphocytes: its applicability for antileukemia immunotherapy. J Exp Clin Cancer Res, 18, 485-92.
- Padua RA, Larghero J, Robin M, et al (2003). PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nature medicine, 9, 1413-7. https://doi.org/10.1038/nm949
- Potts PR, Yu H (2007). The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol, 14, 581-90. https://doi.org/10.1038/nsmb1259
- Quignon F, De Bels F, Koken M, et al (1998). PML induces a novel caspase-independent death process. Nat Genet, 20, 259-65. https://doi.org/10.1038/3068
- Rabellino A, Carter B, Konstantinidou G, et al (2012). The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA. Cancer Res, 72, 2275-84. https://doi.org/10.1158/0008-5472.CAN-11-3159
- Reineke EL, Kao HY (2009). PML: An emerging tumor suppressor and a target with therapeutic potential. Cancer Ther, 7, 219-26.
- Reineke EL, Liu Y, Kao H-Y (2010). Promyelocytic leukemia protein controls cell migration in response to hydrogen peroxide and insulin-like growth factor-1. J Biol Chem, 285, 9485-92. https://doi.org/10.1074/jbc.M109.063362
- Salomoni P, Dvorkina M, Michod D (2012). Role of the promyelocytic leukaemia protein in cell death regulation. Cell Death Dis, 3, 247. https://doi.org/10.1038/cddis.2011.122
- Satow R, Shitashige M, Jigami T, et al (2012). beta-catenin inhibits promyelocytic leukemia protein tumor suppressor function in colorectal cancer cells. Gastroenterology, 142, 572-81. https://doi.org/10.1053/j.gastro.2011.11.041
- Scaglioni PP, Yung TM, Choi S, et al (2008). CK2 mediates phosphorylation and ubiquitin-mediated degradation of the PML tumor suppressor. Mol Cell Biochem, 316, 149-54. https://doi.org/10.1007/s11010-008-9812-7
- Shen TH, Lin HK, Scaglioni PP, et al (2006). The mechanisms of PML-nuclear body formation. Mol Cell, 24, 331-9. https://doi.org/10.1016/j.molcel.2006.09.013
- Silzle T, Randolph GJ, Kreutz M, et al (2004). The fibroblast: sentinel cell and local immune modulator in tumor tissue. Int J Cancer, 108, 173-80. https://doi.org/10.1002/ijc.11542
- Stadler M, Chelbi-Alix MK, Koken M, et al (1995). Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene, 11, 2565-73.
- Stehmeier P, Muller S (2009). Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol Cell, 33, 400-9. https://doi.org/10.1016/j.molcel.2009.01.013
- Tabarestani S, Ghafouri-Fard S (2012). Cancer stem cells and response to therapy. Asian Pac J Cancer Prev, 13, 5951-8.
- Tamura G (2006). Alterations of tumor suppressor and tumorrelated genes in the development and progression of gastric cancer. World J Gastroenterol, 12, 192-8.
- Tang MK, Liang YJ, Chan JY, et al (2013). Promyelocytic leukemia (PML) protein plays important roles in regulating cell adhesion, morphology, proliferation and migration. PLoS One, 8, 59477. https://doi.org/10.1371/journal.pone.0059477
- Tatham MH, Geoffroy MC, Shen L, et al (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol, 10, 538-46. https://doi.org/10.1038/ncb1716
- Trotman LC, Alimonti A, Scaglioni PP, et al (2006). Identification of a tumour suppressor network opposing nuclear Akt function. Nature, 441, 523-7. https://doi.org/10.1038/nature04809
- Van Damme E, Laukens K, Dang TH, et al (2010). A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci, 6, 51-67.
- Vernier M, Bourdeau V, Gaumont-Leclerc MF, et al (2011). Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev, 25, 41-50. https://doi.org/10.1101/gad.1975111
- Wang S, Long J, Zheng CF (2012). The potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1. Protein Cell, 3, 372-82. https://doi.org/10.1007/s13238-012-2021-x
- Wang Z-G, Ruggero D, Ronchetti S, et al (1998a). PML is essential for multiple apoptotic pathways. Nature genetics, 20, 266-72. https://doi.org/10.1038/3073
- Wang ZG, Ruggero D, Ronchetti S, et al (1998b). PML is essential for multiple apoptotic pathways. Nat Genet, 20, 266-72. https://doi.org/10.1038/3073
- Wu G, Lee WH, Chen PL (2000). NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J Biol Chem, 275, 30618-22. https://doi.org/10.1074/jbc.C000390200
- Wu S, Zhang X, Li ZM, et al (2013). Partial Least Squares Based Gene Expression Analysis in EBV- Positive and EBVNegative Posttransplant Lymphoproliferative Disorders. Asian Pac J Cancer Prev, 14, 6347-50. https://doi.org/10.7314/APJCP.2013.14.11.6347
- Wu WS, Xu ZX, Hittelman WN, et al (2003). Promyelocytic leukemia protein sensitizes tumor necrosis factor alphainduced apoptosis by inhibiting the NF-kappaB survival pathway. J Biol Chem, 278, 12294-304. https://doi.org/10.1074/jbc.M211849200
- Yang S, Kuo C, Bisi JE, et al (2002). PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol, 4, 865-70. https://doi.org/10.1038/ncb869
- Yeager TR, Neumann AA, Englezou A, et al (1999). Telomerasenegative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res, 59, 4175-9.
- Zhou W, Bao S (2014). PML-mediated signaling and its role in cancer stem cells. Oncogene, 33, 1475-84. https://doi.org/10.1038/onc.2013.111