DOI QR코드

DOI QR Code

Identification of Niche Conditions Supporting Short-term Culture of Spermatogonial Stem Cells Derived from Porcine Neonatal Testis

  • Park, Min Hee (Department of Animal Life Science, Kangwon National University) ;
  • Park, Ji Eun (Department of Animal Life Science, Kangwon National University) ;
  • Kim, Min Seong (Department of Animal Life Science, Kangwon National University) ;
  • Lee, Kwon Young (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Yun, Jung Im (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Choi, Jung Hoon (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Lee, Eunsong (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Lee, Seung Tae (Department of Animal Life Science, Kangwon National University)
  • 투고 : 2014.08.19
  • 심사 : 2014.09.22
  • 발행 : 2014.09.30

초록

Despite that porcine spermatogonial stem cells (pSSCs) have been regarded as a practical tool for preserving eternally genetic backgrounds derived from pigs with high performance in the economic traits or phenotypes of specific human diseases, there were no reports about precise definition of niche conditions promoting proliferation and maintenance of pSSCs. Accordingly, we tried to determine niche conditions supporting proliferation and maintenance of undifferentiated pSSCs for short-term. For these, undifferentiated pSSCs were progressively cultured in different composition of culture medium, seeding density of pSSCs, type of feeder cells and concentration of growth factors, and then total number of and alkaline phosphatase (AP) activity of pSSCs were investigated at post-6 day culture. As the results, the culture of $4{\times}10^5$ pSSCs on mitotically in activated $2{\times}10^5$ STO cells in the mouse embryonic stem cell culture medium (mESCCM) supplemented with 30 ng/ml glial cell line-derived neurotrophic factor (GDNF) was identified as the best niche condition supporting effectively the short-term maintenance of undifferentiated pSSCs. Moreover, the optimized short-term culture system will be a basis for developing long-term culture system of pSSCs in the following researches.

키워드

참고문헌

  1. Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wünsch A and Wolf E. 2010. Transgenic pigs as models for translational biomedical research. J. Mol. Med. (Berl). 88:653- 664. https://doi.org/10.1007/s00109-010-0610-9
  2. Aponte PM, van Bragt MP, De Rooij DG and van Pelt AM. 2005. Spermatogonial stem cells:characteristics and experimental possibilities. APMIS. 113:727-742. https://doi.org/10.1111/j.1600-0463.2005.apm_302.x
  3. Cheng G and Feng ST. 2006. Studies on spermatogonial stem cells cultured in vitro of Wuzhishan Mini Porcine. Sheng Wu Gong Cheng Xue Bao 22:689-693.
  4. Deacon T, Schumacher J, Dinsmore J, Thomas C, Palmer P, Kott S, Edge A, Penney D, Kassissieh S, Dempsey P and Isacson O. 1997. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson's disease. Nat. Med. 3:350-353. https://doi.org/10.1038/nm0397-350
  5. Elahi S, Brownlie R, Korzeniowski J, Buchanan R, O'Connor B, Peppler MS, Halperin SA, Lee SF, Babiuk LA and Gerdts V. 2005. Infection of newborn piglets with Bordetella pertussis: A new model for pertussis. Infect. Immun. 73:3636- 3645. https://doi.org/10.1128/IAI.73.6.3636-3645.2005
  6. Fan N and Lai L. 2013. Genetically modified pig models for human diseases. J. Genet. Genomics 40:67-73. https://doi.org/10.1016/j.jgg.2012.07.014
  7. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W and Hasenfuss G. 2006. Pluipotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199-1203. https://doi.org/10.1038/nature04697
  8. Goel S, Sugimoto M, Minami N, Yamada M, Kume S, Imai H. 2007. Identification, isolation, and in vitro culture of porcine gonocytes. Biol. Reprod. 77:127-137. https://doi.org/10.1095/biolreprod.106.056879
  9. Han SY, Gupta MK, Uhm SJ and Lee HT. 2009. Isolation and in vitro culture of pig spermatogonial stem cell. Asian-Aust. J. Anim. Sci. 22:187-193. https://doi.org/10.5713/ajas.2009.80324
  10. Hasenfuss G. 1998. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc. Res. 39:60-76. https://doi.org/10.1016/S0008-6363(98)00110-2
  11. Heidari B, Rahmati-Ahmadabadi M, Akhondi MM, Zarnani A H, Jeddi-Tehrani M, Shirazi A, Naderi MM and Behzadi B. 2012. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J. Assist. Reprod. Genet. 29:1029-1038. https://doi.org/10.1007/s10815-012-9828-5
  12. Izadyar F, Spierenberg GT, Creemers LB, den Ouden K and de Rooij DG. 2002. Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124: 85-94. https://doi.org/10.1530/rep.0.1240085
  13. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S and Shinohara T. 2003. Long-term proliferation in culture and germline transmission of mouse male germline stem cell. Biol. Reprod. 69:612-616. https://doi.org/10.1095/biolreprod.103.017012
  14. Kanatsu-Shinohara M, Inoue K, Ogonuki N, Morimoto H, Ogura A and Shinohara T. 2011. Serum- and feeder-free culture of mouse germline stem cells. Biol Reprod. 84:97-105. https://doi.org/10.1095/biolreprod.110.086462
  15. Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A, Wang L, Qin Z, Renukaradhya GJ and Lee CW. 2010. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: A potential animal model for human H1N1 influenza virus. J. Virol. 84:11210-11218. https://doi.org/10.1128/JVI.01211-10
  16. Kossack N, Meneses J, Shefi S, Nguyen HN, Chavez S, Nicholas C, Gromoll J, Turek PJ, and Reijo-Pera RA. 2009. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27:138-149. https://doi.org/10.1634/stemcells.2008-0439
  17. Kubota H, Avarbock MR and Brinster RL. 2004. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. U. S. A. 101: 16489-16494. https://doi.org/10.1073/pnas.0407063101
  18. Kuijk EW, Colenbrander B and Roelen BA. 2009. The effects of growth factors on in vitro-cultured porcine testicular cells. Reproduction 138:721-731. https://doi.org/10.1530/REP-09-0138
  19. Lee WY, Park HJ, Lee R, Lee KH, Kim YH, Ryu BY, Kim NH, Kim JH, Kim JH, Moon SH, Park JK, Chung HJ, Kim DH, Song H. 2013. Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions. Stem Cell Res. 11:1234-1249. https://doi.org/10.1016/j.scr.2013.08.008
  20. Meurens F, Summerfield A, Nauwynck H, Saif L and Gerdts V. 2012. The pig:a model for human infectious diseases. Trends Microbiol. 20:50-57. https://doi.org/10.1016/j.tim.2011.11.002
  21. Oatley JM and Brinster RL. 2008. Regulation of spermatogonial stem cell self-renewal in mammals. Annu. Rev. Cell Dev. Biol. 24:263-286. https://doi.org/10.1146/annurev.cellbio.24.110707.175355
  22. Prieto C and Castro JM. 2005. Porcine reproductive and respiratory syndrome virus infection in the boar: A review. Theriogenology 63:1-16. https://doi.org/10.1016/j.theriogenology.2004.03.018
  23. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR and Gearhart J D. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. U. S. A. 95:13726-13731. https://doi.org/10.1073/pnas.95.23.13726
  24. Shim H, Gutiérrez-Adán A, Chen LR, BonDurant RH, Behboodi E and Anderson GB. 1997. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol. Reprod. 57:1089-1095. https://doi.org/10.1095/biolreprod57.5.1089
  25. Swindle MM, Makin A, Herron AJ, Clubb FJ Jr and Frazier KS. 2012. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49:344-356. https://doi.org/10.1177/0300985811402846