DOI QR코드

DOI QR Code

Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques

  • Jahng, Geon-Ho (Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University) ;
  • Li, Ka-Loh (Wolfson Molecular Imaging Center, The University of Manchester) ;
  • Ostergaard, Leif (Center for Functionally Integrative Neuroscience, Department of Neuroradiology, Aarhus University Hospital) ;
  • Calamante, Fernando (Florey Institute of Neuroscience and Mental Health)
  • Received : 2014.05.08
  • Accepted : 2014.07.05
  • Published : 2014.09.01

Abstract

Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI.

Keywords

Acknowledgement

Supported by : Ministry for Health, Welfare & Family Affairs

References

  1. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265 https://doi.org/10.1002/mrm.1910140211
  2. Erlemann R, Reiser MF, Peters PE, Vasallo P, Nommensen B, Kusnierz-Glaz CR, et al. Musculoskeletal neoplasms: static and dynamic Gd-DTPA--enhanced MR imaging. Radiology 1989;171:767-773 https://doi.org/10.1148/radiology.171.3.2717749
  3. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992;23:37-45 https://doi.org/10.1002/mrm.1910230106
  4. Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 1994;31:601-610 https://doi.org/10.1002/mrm.1910310605
  5. Simonsen CZ, Ostergaard L, Vestergaard-Poulsen P, Rohl L, Bjornerud A, Gyldensted C. CBF and CBV measurements by USPIO bolus tracking: reproducibility and comparison with Gd-based values. J Magn Reson Imaging 1999;9:342-347 https://doi.org/10.1002/(SICI)1522-2586(199902)9:2<342::AID-JMRI29>3.0.CO;2-B
  6. Stanisz GJ, Henkelman RM. Gd-DTPA relaxivity depends on macromolecular content. Magn Reson Med 2000;44:665-667 https://doi.org/10.1002/1522-2594(200011)44:5<665::AID-MRM1>3.0.CO;2-M
  7. Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 2006;41:213-221 https://doi.org/10.1097/01.rli.0000197668.44926.f7
  8. Buckley DL, Kershaw LE, Stanisz GJ. Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: dynamic contrast-enhanced MRI of human internal obturator muscle. Magn Reson Med 2008;60:1011-1019 https://doi.org/10.1002/mrm.21748
  9. Wong EC. An introduction to ASL labeling techniques. J Magn Reson Imaging 2014;40:1-10 https://doi.org/10.1002/jmri.24565
  10. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992;89:212-216 https://doi.org/10.1073/pnas.89.1.212
  11. Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 1998;208:410-416 https://doi.org/10.1148/radiology.208.2.9680569
  12. Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, et al. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994;192:513-520 https://doi.org/10.1148/radiology.192.2.8029425
  13. Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995;34:878-887 https://doi.org/10.1002/mrm.1910340613
  14. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995;34:293-301 https://doi.org/10.1002/mrm.1910340303
  15. Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997;10:237-249 https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X
  16. Pruessmann KP, Golay X, Stuber M, Scheidegger MB, Boesiger P. RF pulse concatenation for spatially selective inversion. J Magn Reson 2000;146:58-65 https://doi.org/10.1006/jmre.2000.2107
  17. Jahng GH, Zhu XP, Matson GB, Weiner MW, Schuff N. Improved perfusion-weighted MRI by a novel double inversion with proximal labeling of both tagged and control acquisitions. Magn Reson Med 2003;49:307-314 https://doi.org/10.1002/mrm.10339
  18. Jahng GH, Weiner MW, Schuff N. Improved arterial spin labeling method: applications for measurements of cerebral blood flow in human brain at high magnetic field MRI. Med Phys 2007;34:4519-4525 https://doi.org/10.1118/1.2795675
  19. Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT. Velocity-selective arterial spin labeling. Magn Reson Med 2006;55:1334-1341 https://doi.org/10.1002/mrm.20906
  20. Kiselev VG. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 2001;46:1113-1122 https://doi.org/10.1002/mrm.1307
  21. Speck O, Chang L, DeSilva NM, Ernst T. Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 2000;12:381-387 https://doi.org/10.1002/1522-2586(200009)12:3<381::AID-JMRI2>3.0.CO;2-Y
  22. Zhu XP, Li KL, Kamaly-Asl ID, Checkley DR, Tessier JJ, Waterton JC, et al. Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging 2000;11:575-585 https://doi.org/10.1002/1522-2586(200006)11:6<575::AID-JMRI2>3.0.CO;2-1
  23. Gunther M, Bock M, Schad LR. Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 2001;46:974-984 https://doi.org/10.1002/mrm.1284
  24. Brookes MJ, Morris PG, Gowland PA, Francis ST. Noninvasive measurement of arterial cerebral blood volume using Look-Locker EPI and arterial spin labeling. Magn Reson Med 2007;58:41-54 https://doi.org/10.1002/mrm.21199
  25. Francis ST, Bowtell R, Gowland PA. Modeling and optimization of Look-Locker spin labeling for measuring perfusion and transit time changes in activation studies taking into account arterial blood volume. Magn Reson Med 2008;59:316-325 https://doi.org/10.1002/mrm.21442
  26. Fernandez-Seara MA, Wang Z, Wang J, Rao HY, Guenther M, Feinberg DA, et al. Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med 2005;54:1241-1247 https://doi.org/10.1002/mrm.20674
  27. Gunther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005;54:491-498 https://doi.org/10.1002/mrm.20580
  28. Talagala SL, Ye FQ, Ledden PJ, Chesnick S. Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 2004;52:131-140 https://doi.org/10.1002/mrm.20124
  29. Wong EC. New developments in arterial spin labeling pulse sequences. NMR Biomed 2013;26:887-891 https://doi.org/10.1002/nbm.2954
  30. Calamante F, Vonken EJ, van Osch MJ. Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 2007;58:544-553 https://doi.org/10.1002/mrm.21362
  31. Li KL, Buonaccorsi G, Thompson G, Cain JR, Watkins A, Russell D, et al. An improved coverage and spatial resolution--using dual injection dynamic contrast-enhanced (ICE-DICE) MRI: a novel dynamic contrast-enhanced technique for cerebral tumors. Magn Reson Med 2012;68:452-462 https://doi.org/10.1002/mrm.23252
  32. Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2014. doi: 10.1002/mrm.25197
  33. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954;6:731-744 https://doi.org/10.1152/jappl.1954.6.12.731
  34. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725 https://doi.org/10.1002/mrm.1910360510
  35. Thompson HK Jr, Starmer CF, Whalen RE, Mcintosh HD. Indicator transit time considered as a gamma variate. Circ Res 1964;14:502-515 https://doi.org/10.1161/01.RES.14.6.502
  36. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998;39:702-708 https://doi.org/10.1002/mrm.1910390506
  37. Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 1999;41:1246-1254 https://doi.org/10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
  38. Detre JA, Alsop DC, Vives LR, Maccotta L, Teener JW, Raps EC. Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology 1998;50:633-641 https://doi.org/10.1212/WNL.50.3.633
  39. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249 https://doi.org/10.1097/00004647-199611000-00019
  40. Paulson OB, Hertz MM, Bolwig TG, Lassen NA. Water filtration and diffusion across the blood brain barrier in man. Acta Neurol Scand Suppl 1977;64:492-493
  41. Li KL, Zhu X, Hylton N, Jahng GH, Weiner MW, Schuff N. Four-phase single-capillary stepwise model for kinetics in arterial spin labeling MRI. Magn Reson Med 2005;53:511-518 https://doi.org/10.1002/mrm.20390
  42. Starmer CF, Clark DO. Computer computations of cardiac output using the gamma function. J Appl Physiol 1970;28:219-220 https://doi.org/10.1152/jappl.1970.28.2.219
  43. Weisskoff RM, Chesler D, Boxerman JL, Rosen BR. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time? Magn Reson Med 1993;29:553-558 https://doi.org/10.1002/mrm.1910290420
  44. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 1999;19:701-735 https://doi.org/10.1097/00004647-199907000-00001
  45. Calamante F, Gadian DG, Connelly A. Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 2002;33:1146- 1151 https://doi.org/10.1161/01.STR.0000014208.05597.33
  46. Calamante F. Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 2013;74:1-32 https://doi.org/10.1016/j.pnmrs.2013.04.002
  47. Rosen BR, Belliveau JW, Buchbinder BR, McKinstry RC, Porkka LM, Kennedy DN, et al. Contrast agents and cerebral hemodynamics. Magn Reson Med 1991;19:285-292 https://doi.org/10.1002/mrm.1910190216
  48. Benner T, Heiland S, Erb G, Forsting M, Sartor K. Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise. Magn Reson Imaging 1997;15:307-317 https://doi.org/10.1016/S0730-725X(96)00392-X
  49. Wu Y, An H, Krim H, Lin W. An independent component analysis approach for minimizing effects of recirculation in dynamic susceptibility contrast magnetic resonance imaging. J Cereb Blood Flow Metab 2007;27:632-645 https://doi.org/10.1038/sj.jcbfm.9600374
  50. Calamante F. Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 2005;22:718-722 https://doi.org/10.1002/jmri.20454
  51. Wirestam R, Andersson L, Ostergaard L, Bolling M, Aunola JP, Lindgren A, et al. Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 2000;43:691-700 https://doi.org/10.1002/(SICI)1522-2594(200005)43:5<691::AID-MRM11>3.0.CO;2-B
  52. Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000;44:466-473 https://doi.org/10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M
  53. Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50:164-174 https://doi.org/10.1002/mrm.10522
  54. Gall P, Emerich P, Kjolby BF, Kellner E, Mader I, Kiselev VG. On the design of filters for Fourier and oSVD-based deconvolution in bolus tracking perfusion MRI. MAGMA 2010;23:187-195 https://doi.org/10.1007/s10334-010-0217-8
  55. Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003;50:1237-1247 https://doi.org/10.1002/mrm.10643
  56. Zanderigo F, Bertoldo A, Pillonetto G, Cobelli Ast C. Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov. IEEE Trans Biomed Eng 2009;56:1287-1297 https://doi.org/10.1109/TBME.2009.2013820
  57. Vonken EJ, van Osch MJ, Bakker CJ, Viergever MA. Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 1999;10:109-117 https://doi.org/10.1002/(SICI)1522-2586(199908)10:2<109::AID-JMRI1>3.0.CO;2-#
  58. Willats L, Connelly A, Calamante F. Minimising the effects of bolus dispersion in bolus-tracking MRI. NMR Biomed 2008;21:1126-1137 https://doi.org/10.1002/nbm.1290
  59. Willats L, Connelly A, Calamante F. Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 2006;56:146-156 https://doi.org/10.1002/mrm.20940
  60. Gruner R, Taxt T. Iterative blind deconvolution in magnetic resonance brain perfusion imaging. Magn Reson Med 2006;55:805-815 https://doi.org/10.1002/mrm.20850
  61. Mehndiratta A, Calamante F, Macintosh BJ, Crane DE, Payne SJ, Chappell MA. Modeling and correction of bolus dispersion effects in dynamic susceptibility contrast MRI. Magn Reson Med 2014. doi:10.1002/mrm.25077
  62. Mouridsen K, Friston K, Hjort N, Gyldensted L, Ostergaard L, Kiebel S. Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 2006;33:570-579 https://doi.org/10.1016/j.neuroimage.2006.06.015
  63. Kao YH, Guo WY, Wu YT, Liu KC, Chai WY, Lin CY, et al. Hemodynamic segmentation of MR brain perfusion images using independent component analysis, thresholding, and Bayesian estimation. Magn Reson Med 2003;49:885-894 https://doi.org/10.1002/mrm.10440
  64. Kidwell CS, Saver JL, Mattiello J, Starkman S, Vinuela F, Duckwiler G, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 2000;47:462-469 https://doi.org/10.1002/1531-8249(200004)47:4<462::AID-ANA9>3.0.CO;2-Y
  65. Calamante F, Christensen S, Desmond PM, Ostergaard L, Davis SM, Connelly A. The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke 2010;41:1169-1174 https://doi.org/10.1161/STROKEAHA.110.580670
  66. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223-232 https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
  67. Jackson A, Li KL, Zhu X. Semi-quantitative parameter analysis of DCE-MRI revisited: monte-carlo simulation, clinical comparisons, and clinical validation of measurement errors in patients with type 2 neurofibromatosis. PLoS One 2014;9:e90300 https://doi.org/10.1371/journal.pone.0090300
  68. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91-101 https://doi.org/10.1002/jmri.1880070113
  69. St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: II. Experimental validation. J Cereb Blood Flow Metab 1998;18:1378-1385 https://doi.org/10.1097/00004647-199812000-00012
  70. Brix G, Bahner ML, Hoffmann U, Horvath A, Schreiber W. Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT--initial experience. Radiology 1999;210:269-276 https://doi.org/10.1148/radiology.210.1.r99ja46269
  71. Larsson HB, Courivaud F, Rostrup E, Hansen AE. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med 2009;62:1270-1281 https://doi.org/10.1002/mrm.22136
  72. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 1948;27:476-483 https://doi.org/10.1172/JCI101994
  73. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998;40:383-396 https://doi.org/10.1002/mrm.1910400308
  74. Willats L, Calamante F. The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI. NMR Biomed 2013;26:913-931 https://doi.org/10.1002/nbm.2833
  75. Calamante F, Connelly A, van Osch MJ. Nonlinear DeltaR*2 effects in perfusion quantification using bolus-tracking MRI. Magn Reson Med 2009;61:486-492 https://doi.org/10.1002/mrm.21839
  76. Calamante F, Willats L, Gadian DG, Connelly A. Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 2006;55:1180-1185 https://doi.org/10.1002/mrm.20873
  77. Calamante F, Yim PJ, Cebral JR. Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage 2003;19(2 Pt 1):341-353 https://doi.org/10.1016/S1053-8119(03)00090-9
  78. Calamante F, Morup M, Hansen LK. Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004;52:789-797 https://doi.org/10.1002/mrm.20227
  79. Willats L, Christensen S, Ma HK, Donnan GA, Connelly A, Calamante F. Validating a local Arterial Input Function method for improved perfusion quantification in stroke. J Cereb Blood Flow Metab 2011;31:2189-2198 https://doi.org/10.1038/jcbfm.2011.78
  80. Lorenz C, Benner T, Chen PJ, Lopez CJ, Ay H, Zhu MW, et al. Automated perfusion-weighted MRI using localized arterial input functions. J Magn Reson Imaging 2006;24:1133-1139 https://doi.org/10.1002/jmri.20717
  81. van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ. Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003;49:1067-1076 https://doi.org/10.1002/mrm.10461
  82. Bleeker EJ, van Buchem MA, van Osch MJ. Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 2009;29:840-852 https://doi.org/10.1038/jcbfm.2008.155
  83. Bleeker EJ, van Osch MJ, Connelly A, van Buchem MA, Webb AG, Calamante F. New criterion to aid manual and automatic selection of the arterial input function in dynamic susceptibility contrast MRI. Magn Reson Med 2011;65:448-456 https://doi.org/10.1002/mrm.22599
  84. Bjornerud A, Sorensen AG, Mouridsen K, Emblem KE. T1- and T2*-dominant extravasation correction in DSC-MRI: part I--theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab 2011;31:2041-2053 https://doi.org/10.1038/jcbfm.2011.52
  85. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555-566 https://doi.org/10.1002/mrm.1910340412
  86. Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age-and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 2007;58:1232-1241 https://doi.org/10.1002/mrm.21420
  87. Zaharchuk G, Straka M, Marks MP, Albers GW, Moseley ME, Bammer R. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010;63:1548-1556 https://doi.org/10.1002/mrm.22329
  88. Bonekamp D, Degaonkar M, Barker PB. Quantitative cerebral blood flow in dynamic susceptibility contrast MRI using total cerebral flow from phase contrast magnetic resonance angiography. Magn Reson Med 2011;66:57-66 https://doi.org/10.1002/mrm.22776
  89. Parker GJ, Baustert I, Tanner SF, Leach MO. Improving image quality and T(1) measurements using saturation recovery turboFLASH with an approximate K-space normalisation filter. Magn Reson Imaging 2000;18:157-167 https://doi.org/10.1016/S0730-725X(99)00124-1
  90. Buckley DL. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 2002;47:601-606 https://doi.org/10.1002/mrm.10080
  91. Landis CS, Li X, Telang FW, Coderre JA, Micca PL, Rooney WD, et al. Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med 2000;44:563-574 https://doi.org/10.1002/1522-2594(200010)44:4<563::AID-MRM10>3.0.CO;2-#
  92. Silver MS, Joseph RI, Hoult DI. Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation. Phys Rev A 1985;31:2753-2755 https://doi.org/10.1103/PhysRevA.31.2753
  93. Ordidge RJ, Wylezinska M, Hugg JW, Butterworth E, Franconi F. Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy. Magn Reson Med 1996;36:562-566 https://doi.org/10.1002/mrm.1910360410
  94. Warnking JM, Pike GB. Bandwidth-modulated adiabatic RF pulses for uniform selective saturation and inversion. Magn Reson Med 2004;52:1190-1199 https://doi.org/10.1002/mrm.20262
  95. Dixon WT, Sardashti M, Castillo M, Stomp GP. Multiple inversion recovery reduces static tissue signal in angiograms. Magn Reson Med 1991;18:257-268 https://doi.org/10.1002/mrm.1910180202
  96. Ye FQ, Frank JA, Weinberger DR, McLaughlin AC. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 2000;44:92-100 https://doi.org/10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M
  97. Alsop DC. Arterial spin labeling: its time is now. MAGMA 2012;25:75-77 https://doi.org/10.1007/s10334-012-0309-8
  98. Jahng GH, Stables L, Ebel A, Matson GB, Meyerhoff DJ, Weiner MW, et al. Sensitive and fast T1 mapping based on two inversion recovery images and a reference image. Med Phys 2005;32:1524-1528 https://doi.org/10.1118/1.1915014
  99. Yang Y, Engelien W, Xu S, Gu H, Silbersweig DA, Stern E. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magn Reson Med 2000;44:680-685 https://doi.org/10.1002/1522-2594(200011)44:5<680::AID-MRM4>3.0.CO;2-Q
  100. Gonzalez-At JB, Alsop DC, Detre JA. Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling. Magn Reson Med 2000;43:739-746 https://doi.org/10.1002/(SICI)1522-2594(200005)43:5<739::AID-MRM17>3.0.CO;2-2
  101. Chen Y, Wang DJ, Detre JA. Comparison of arterial transit times estimated using arterial spin labeling. MAGMA 2012;25:135-144 https://doi.org/10.1007/s10334-011-0276-5
  102. Asllani I, Borogovac A, Brown TR. Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med 2008;60:1362-1371 https://doi.org/10.1002/mrm.21670
  103. Liang X, Connelly A, Calamante F. Improved partial volume correction for single inversion time arterial spin labeling data. Magn Reson Med 2013;69:531-537 https://doi.org/10.1002/mrm.24279
  104. Chappell MA, Groves AR, MacIntosh BJ, Donahue MJ, Jezzard P, Woolrich MW. Partial volume correction of multiple inversion time arterial spin labeling MRI data. Magn Reson Med 2011;65:1173-1183 https://doi.org/10.1002/mrm.22641
  105. Kiselev VG. Transverse relaxation effect of MRI contrast agents: a crucial issue for quantitative measurements of cerebral perfusion. J Magn Reson Imaging 2005;22:693-696 https://doi.org/10.1002/jmri.20452
  106. Bleeker EJ, van Buchem MA, Webb AG, van Osch MJ. Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 2010;64:358-368 https://doi.org/10.1002/mrm.22420
  107. Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 2010;32:1024-1037 https://doi.org/10.1002/jmri.22338
  108. Kim J, Leira EC, Callison RC, Ludwig B, Moritani T, Magnotta VA, et al. Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke. Comput Methods Programs Biomed 2010;98:204-213 https://doi.org/10.1016/j.cmpb.2009.12.005
  109. Bjornerud A, Emblem KE. A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. J Cereb Blood Flow Metab 2010;30:1066-1078 https://doi.org/10.1038/jcbfm.2010.4
  110. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497 https://doi.org/10.1002/mrm.21790
  111. Garcia DM, Duhamel G, Alsop DC. Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 2005;54:366-372 https://doi.org/10.1002/mrm.20556
  112. Zaharchuk G, Ledden PJ, Kwong KK, Reese TG, Rosen BR, Wald LL. Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn Reson Med 1999;41:1093-1098 https://doi.org/10.1002/(SICI)1522-2594(199906)41:6<1093::AID-MRM4>3.0.CO;2-0
  113. Paiva FF, Tannus A, Talagala SL, Silva AC. Arterial spin labeling of cerebral perfusion territories using a separate labeling coil. J Magn Reson Imaging 2008;27:970-977 https://doi.org/10.1002/jmri.21320
  114. Helle M, Rufer S, Alfke K, Jansen O, Norris DG. Perfusion territory imaging of intracranial branching arteries - optimization of continuous artery-selective spin labeling (CASSL). NMR Biomed 2011;24:404-412
  115. Davies NP, Jezzard P. Selective arterial spin labeling (SASL): perfusion territory mapping of selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magn Reson Med 2003;49:1133-1142 https://doi.org/10.1002/mrm.10475
  116. Hendrikse J, van der Grond J, Lu H, van Zijl PC, Golay X. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 2004;35:882-887 https://doi.org/10.1161/01.STR.0000120312.26163.EC
  117. Zimine I, Petersen ET, Golay X. Dual vessel arterial spin labeling scheme for regional perfusion imaging. Magn Reson Med 2006;56:1140-1144 https://doi.org/10.1002/mrm.21049
  118. Gunther M. Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI. Magn Reson Med 2006;56:671-675 https://doi.org/10.1002/mrm.20998
  119. Wong EC. Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med 2007;58:1086-1091 https://doi.org/10.1002/mrm.21293
  120. Chappell MA, Okell TW, Jezzard P, Woolrich MW. A general framework for the analysis of vessel encoded arterial spin labeling for vascular territory mapping. Magn Reson Med 2010;64:1529-1539 https://doi.org/10.1002/mrm.22524
  121. Helle M, Norris DG, Rufer S, Alfke K, Jansen O, van Osch MJ. Superselective pseudocontinuous arterial spin labeling. Magn Reson Med 2010;64:777-786 https://doi.org/10.1002/mrm.22451
  122. Hartkamp NS, Petersen ET, De Vis JB, Bokkers RP, Hendrikse J. Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application. NMR Biomed 2013;26:901-912 https://doi.org/10.1002/nbm.2836
  123. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 2001;13:313-317 https://doi.org/10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
  124. Feinberg DA, Beckett A, Chen L. Arterial spin labeling with simultaneous multi-slice echo planar imaging. Magn Reson Med 2013;70:1500-1506 https://doi.org/10.1002/mrm.24994
  125. Kim T, Shin W, Zhao T, Beall EB, Lowe MJ, Bae KT. Whole brain perfusion measurements using arterial spin labeling with multiband acquisition. Magn Reson Med 2013;70:1653-1661 https://doi.org/10.1002/mrm.24880
  126. Dixon WT, Du LN, Faul DD, Gado M, Rossnick S. Projection angiograms of blood labeled by adiabatic fast passage. Magn Reson Med 1986;3:454-462 https://doi.org/10.1002/mrm.1910030311
  127. Robson PM, Dai W, Shankaranarayanan A, Rofsky NM, Alsop DC. Time-resolved vessel-selective digital subtraction MR angiography of the cerebral vasculature with arterial spin labeling. Radiology 2010;257:507-515 https://doi.org/10.1148/radiol.10092333
  128. Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55:219-232 https://doi.org/10.1002/mrm.20784
  129. Silva AC, Williams DS, Koretsky AP. Evidence for the exchange of arterial spin-labeled water with tissue water in rat brain from diffusion-sensitized measurements of perfusion. Magn Reson Med 1997;38:232-237 https://doi.org/10.1002/mrm.1910380211
  130. Saver JL. Time is brain--quantified. Stroke 2006;37:263-266 https://doi.org/10.1161/01.STR.0000196957.55928.ab
  131. Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 2004;9:528-537 https://doi.org/10.1634/theoncologist.9-5-528
  132. Waldman AD, Jackson A, Price SJ, Clark CA, Booth TC, Auer DP, et al. Quantitative imaging biomarkers in neuro-oncology. Nat Rev Clin Oncol 2009;6:445-454 https://doi.org/10.1038/nrclinonc.2009.92
  133. Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K. Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI. Magn Reson Med 2009;62:205-217 https://doi.org/10.1002/mrm.22005
  134. Moody AR, Martel A, Kenton A, Allder S, Horsfield MA, Delay G, et al. Contrast-reduced imaging of tissue concentration and arterial level (CRITICAL) for assessment of cerebral hemodynamics in acute stroke by magnetic resonance. Invest Radiol 2000;35:401-411 https://doi.org/10.1097/00004424-200007000-00002
  135. Martel AL, Allder SJ, Delay GS, Morgan PS, Moody AA. Perfusion MRI of infarcted and noninfarcted brain tissue in stroke: a comparison of conventional hemodynamic imaging and factor analysis of dynamic studies. Invest Radiol 2001;36:378-385 https://doi.org/10.1097/00004424-200107000-00004
  136. Singh A, Haris M, Rathore D, Purwar A, Sarma M, Bayu G, et al. Quantification of physiological and hemodynamic indices using T(1) dynamic contrast-enhanced MRI in intracranial mass lesions. J Magn Reson Imaging 2007;26:871-880 https://doi.org/10.1002/jmri.21080
  137. Larsson HB, Hansen AE, Berg HK, Rostrup E, Haraldseth O. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T. J Magn Reson Imaging 2008;27:754-762 https://doi.org/10.1002/jmri.21328
  138. Leigh R, Jen SS, Varma DD, Hillis AE, Barker PB. Arrival time correction for dynamic susceptibility contrast MR permeability imaging in stroke patients. PLoS One 2012;7:e52656 https://doi.org/10.1371/journal.pone.0052656
  139. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004;25:746-755
  140. Kim EJ, Kim DH, Lee SH, Huh YM, Song HT, Suh JS. Simultaneous acquisition of perfusion and permeability from corrected relaxation rates with dynamic susceptibility contrast dual gradient echo. Magn Reson Imaging 2004;22:307-314 https://doi.org/10.1016/j.mri.2004.01.012
  141. Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG. Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 2002;178:711-716 https://doi.org/10.2214/ajr.178.3.1780711
  142. Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 1990;16:117-131 https://doi.org/10.1002/mrm.1910160111
  143. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991;17:357-367 https://doi.org/10.1002/mrm.1910170208
  144. Materne R, Smith AM, Peeters F, Dehoux JP, Keyeux A, Horsmans Y, et al. Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med 2002;47:135-142 https://doi.org/10.1002/mrm.10045
  145. Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 2003;17:509-520 https://doi.org/10.1002/jmri.10304
  146. Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE. Analysis of myocardial perfusion MRI. J Magn Reson Imaging 2004;19:758-770 https://doi.org/10.1002/jmri.20065
  147. Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, et al. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 2004;52:420-429 https://doi.org/10.1002/mrm.20161
  148. Dujardin M, Sourbron S, Luypaert R, Verbeelen D, Stadnik T. Quantification of renal perfusion and function on a voxel-by-voxel basis: a feasibility study. Magn Reson Med 2005;54:841-849 https://doi.org/10.1002/mrm.20608
  149. Pandharipande PV, Krinsky GA, Rusinek H, Lee VS. Perfusion imaging of the liver: current challenges and future goals. Radiology 2005;234:661-673 https://doi.org/10.1148/radiol.2343031362
  150. Kershaw LE, Hutchinson CE, Buckley DL. Benign prostatic hyperplasia: evaluation of T1, T2, and microvascular characteristics with T1-weighted dynamic contrast-enhanced MRI. J Magn Reson Imaging 2009;29:641-648 https://doi.org/10.1002/jmri.21674
  151. Kim SM, Kim MJ, Rhee HY, Ryu CW, Kim EJ, Petersen ET, et al. Regional cerebral perfusion in patients with Alzheimer's disease and mild cognitive impairment: effect of APOE epsilon4 allele. Neuroradiology 2013;55:25-34 https://doi.org/10.1007/s00234-012-1077-x
  152. Du AT, Jahng GH, Hayasaka S, Kramer JH, Rosen HJ, Gorno-Tempini ML, et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 2006;67:1215-1220 https://doi.org/10.1212/01.wnl.0000238163.71349.78
  153. Hayasaka S, Du AT, Duarte A, Kornak J, Jahng GH, Weiner MW, et al. A non-parametric approach for co-analysis of multi-modal brain imaging data: application to Alzheimer's disease. Neuroimage 2006;30:768-779 https://doi.org/10.1016/j.neuroimage.2005.10.052
  154. Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 2005;234:851-859 https://doi.org/10.1148/radiol.2343040197
  155. Bokkers RP, van Osch MJ, Klijn CJ, Kappelle LJ, Hendrikse J. Cerebrovascular reactivity within perfusion territories in patients with an internal carotid artery occlusion. J Neurol Neurosurg Psychiatry 2011;82:1011-1016 https://doi.org/10.1136/jnnp.2010.233338
  156. Song YS, Choi SH, Park CK, Yi KS, Lee WJ, Yun TJ, et al. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis. Korean J Radiol 2013;14:662-672 https://doi.org/10.3348/kjr.2013.14.4.662
  157. Choi YJ, Kim HS, Jahng GH, Kim SJ, Suh DC. Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol 2013;54:448-454 https://doi.org/10.1177/0284185112474916
  158. Haller S, Rodriguez C, Moser D, Toma S, Hofmeister J, Sinanaj I, et al. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: a BOLD and perfusion MRI study. Neuroscience 2013;250:364-371 https://doi.org/10.1016/j.neuroscience.2013.07.021
  159. Liang X, Tournier JD, Masterton R, Connelly A, Calamante F. A k-space sharing 3D GRASE pseudocontinuous ASL method for whole-brain resting-state functional connectivity. Int J Imaging Syst Technol 2012;22:37-43 https://doi.org/10.1002/ima.22006
  160. Liang X, Connelly A, Calamante F. Graph analysis of resting-state ASL perfusion MRI data: nonlinear correlations among CBF and network metrics. Neuroimage 2014;87:265-275 https://doi.org/10.1016/j.neuroimage.2013.11.013

Cited by

  1. Utility of Tissue Similarity Maps Based on Relative Cerebral Blood Volume for Grading Gliomas as Validated by Histological Results vol.128, pp.15, 2014, https://doi.org/10.4103/0366-6999.161398
  2. Technical Note: Clinical translation of the Rapid‐Steady‐State‐ T1 MRI method for direct cerebral blood volume quantification vol.42, pp.11, 2014, https://doi.org/10.1118/1.4932218
  3. Characteristics of quantitative perfusion parameters on dynamic contrast‐enhanced MRI in mammographically occult breast cancer vol.17, pp.5, 2014, https://doi.org/10.1120/jacmp.v17i5.6091
  4. Application of Arterial Spin Labelling in the Assessment of Ocular Tissues vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/6240504
  5. Dynamic Susceptibility Contrast-Enhanced MR Perfusion Imaging in Assessing Recurrent Glioblastoma Response to Superselective Intra-Arterial Bevacizumab Therapy vol.37, pp.10, 2016, https://doi.org/10.3174/ajnr.a4823
  6. Pre-Operative Perfusion Skewness and Kurtosis Are Potential Predictors of Progression-Free Survival after Partial Resection of Newly Diagnosed Glioblastoma vol.17, pp.1, 2014, https://doi.org/10.3348/kjr.2016.17.1.117
  7. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know vol.17, pp.5, 2014, https://doi.org/10.3348/kjr.2016.17.5.598
  8. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging vol.17, pp.5, 2014, https://doi.org/10.3348/kjr.2016.17.5.641
  9. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats vol.17, pp.5, 2014, https://doi.org/10.3348/kjr.2016.17.5.715
  10. Magnetic resonance imaging of cerebral blood flow in animal stroke models vol.2, pp.1, 2014, https://doi.org/10.4103/2394-8108.178544
  11. Nonenhanced hybridized arterial spin labeled magnetic resonance angiography of the extracranial carotid arteries using a fast low angle shot readout at 3 Tesla vol.18, pp.None, 2014, https://doi.org/10.1186/s12968-016-0238-1
  12. Regulation of the cerebral circulation: bedside assessment and clinical implications vol.20, pp.None, 2014, https://doi.org/10.1186/s13054-016-1293-6
  13. Feasibility of non-contrast-enhanced four dimensional (4D) MRA in head and neck tumors, comparison with contrast-enhanced 4D MRA vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-2953-3
  14. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas vol.8, pp.4, 2017, https://doi.org/10.18632/oncotarget.13970
  15. Advanced MRI for Pediatric Brain Tumors with Emphasis on Clinical Benefits vol.18, pp.1, 2014, https://doi.org/10.3348/kjr.2017.18.1.194
  16. Influence of B 1 -Inhomogeneity on Pharmacokinetic Modeling of Dynamic Contrast-Enhanced MRI: A Simulation Study vol.18, pp.4, 2014, https://doi.org/10.3348/kjr.2017.18.4.585
  17. Cerebellum and neurodegenerative diseases: Beyond conventional magnetic resonance imaging vol.9, pp.10, 2017, https://doi.org/10.4329/wjr.v9.i10.371
  18. Role of pharmacokinetic parameters derived with high temporal resolution DCE MRI using simultaneous PET/MRI system in breast cancer: A feasibility study vol.86, pp.None, 2017, https://doi.org/10.1016/j.ejrad.2016.11.029
  19. Perfusion information extracted from resting state functional magnetic resonance imaging vol.37, pp.2, 2017, https://doi.org/10.1177/0271678x16631755
  20. Functional Magnetic Resonance Imaging with Arterial Spin Labeling: Techniques and Potential Clinical and Research Applications vol.21, pp.2, 2017, https://doi.org/10.13104/imri.2017.21.2.91
  21. Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke vol.11, pp.10, 2014, https://doi.org/10.1021/acsnano.7b05784
  22. Robustness of spatio‐temporal regularization in perfusion MRI deconvolution: An application to acute ischemic stroke vol.78, pp.5, 2014, https://doi.org/10.1002/mrm.26573
  23. Self-controlled super-selective arterial spin labelling vol.28, pp.3, 2014, https://doi.org/10.1007/s00330-017-5066-7
  24. Slice-accelerated gradient-echo echo planar imaging dynamic susceptibility contrast-enhanced MRI with blipped CAIPI: effect of increasing temporal resolution vol.36, pp.1, 2014, https://doi.org/10.1007/s11604-017-0695-y
  25. Intravoxel incoherent motion MRI in neurological and cerebrovascular diseases vol.20, pp.None, 2018, https://doi.org/10.1016/j.nicl.2018.08.030
  26. The FDA NIH Biomarkers, EndpointS, and other Tools (BEST) resource in neuro-oncology vol.20, pp.9, 2014, https://doi.org/10.1093/neuonc/nox242
  27. Simultaneous multislice acquisition with multi-contrast segmented EPI for separation of signal contributions in dynamic contrast-enhanced imaging vol.13, pp.8, 2018, https://doi.org/10.1371/journal.pone.0202673
  28. Altered Regional Cerebral Blood Flow Associated with Mood and Sleep in Shift Workers: Cerebral Perfusion Magnetic Resonance Imaging Study vol.15, pp.4, 2014, https://doi.org/10.3988/jcn.2019.15.4.438
  29. Gadolinium Deposition in the Brain: Current Updates vol.20, pp.1, 2014, https://doi.org/10.3348/kjr.2018.0356
  30. Functional magnetic resonance imaging of head and neck cancer: Performance and potential vol.32, pp.1, 2014, https://doi.org/10.1177/1971400918808546
  31. Evaluation of Tumor Blood Flow Using Alternate Ascending/Descending Directional Navigation in Primary Brain Tumors: A Comparison Study with Dynamic Susceptibility Contrast Magnetic Resonance Imaging vol.20, pp.2, 2014, https://doi.org/10.3348/kjr.2018.0300
  32. Transcranial magnetic resonance-guided focused ultrasound surgery at 1.5T: a technical note vol.32, pp.2, 2019, https://doi.org/10.1177/1971400918818743
  33. Dynamic Contrast-Enhanced Ultrasound of Gastric Cancer: Correlation with Perfusion CT and Histopathology vol.20, pp.5, 2019, https://doi.org/10.3348/kjr.2018.0273
  34. Venous Collateral Pathways in Superior Thoracic Inlet Obstruction: A Systematic Analysis of Anatomy, Embryology, and Resulting Patterns vol.213, pp.1, 2014, https://doi.org/10.2214/ajr.18.20172
  35. Prospective comparative diagnostic accuracy evaluation of dynamic contrast‐enhanced (DCE) vs. dynamic susceptibility contrast (DSC) MR perfusion in differentiating tumor recurrence from radiatio vol.50, pp.2, 2019, https://doi.org/10.1002/jmri.26621
  36. Quantitative Imaging in Pediatric Hepatobiliary Disease vol.20, pp.9, 2014, https://doi.org/10.3348/kjr.2019.0002
  37. Colorectal cancer: Parametric evaluation of morphological, functional and molecular tomographic imaging vol.25, pp.35, 2014, https://doi.org/10.3748/wjg.v25.i35.5233
  38. Advances in Diffusion and Perfusion MRI for Quantitative Cancer Imaging vol.7, pp.4, 2014, https://doi.org/10.1007/s40139-019-00204-7
  39. Angiogenesis in Hepatocellular Carcinoma; Pathophysiology, Targeted Therapy, and Role of Imaging vol.7, pp.None, 2020, https://doi.org/10.2147/jhc.s224471
  40. MRI in systems medicine vol.12, pp.1, 2020, https://doi.org/10.1002/wsbm.1463
  41. Magnetic resonance fingerprinting Part 1: Potential uses, current challenges, and recommendations vol.51, pp.3, 2014, https://doi.org/10.1002/jmri.26836
  42. Infarct Evolution in a Large Animal Model of Middle Cerebral Artery Occlusion vol.11, pp.3, 2014, https://doi.org/10.1007/s12975-019-00732-9
  43. Magnetic Resonance Imaging: Historical Overview, Technical Developments, and Clinical Applications vol.31, pp.3, 2014, https://doi.org/10.14316/pmp.2020.31.3.35
  44. Design, Implementation, and Validation of a Pulsatile Heart Phantom Pump vol.33, pp.5, 2014, https://doi.org/10.1007/s10278-020-00375-5
  45. Multiparametric MRI assessment of response to convection-enhanced intratumoral delivery of MDNA55, an interleukin-4 receptor targeted immunotherapy, for recurrent glioblastoma vol.12, pp.None, 2021, https://doi.org/10.25259/sni_353_2021
  46. Quantitative perfusion mapping with induced transient hypoxia using BOLD MRI vol.85, pp.1, 2014, https://doi.org/10.1002/mrm.28422
  47. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function vol.12, pp.None, 2014, https://doi.org/10.3389/fphys.2021.733868
  48. Development of concurrent magnetic resonance imaging and volumetric optoacoustic tomography: A phantom feasibility study vol.14, pp.2, 2014, https://doi.org/10.1002/jbio.202000293
  49. T‐Hex: Tilted hexagonal grids for rapid 3D imaging vol.85, pp.5, 2021, https://doi.org/10.1002/mrm.28600
  50. Differentiating Glioblastomas from Solitary Brain Metastases: An Update on the Current Literature of Advanced Imaging Modalities vol.13, pp.12, 2014, https://doi.org/10.3390/cancers13122960
  51. Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations vol.11, pp.6, 2021, https://doi.org/10.3390/diagnostics11060926
  52. Magnetic resonance biomarkers in radiation oncology: The report of AAPM Task Group 294 vol.48, pp.7, 2014, https://doi.org/10.1002/mp.14884
  53. N-acetyl cysteine administration affects cerebral blood flow as measured by arterial spin labeling MRI in patients with multiple sclerosis vol.7, pp.7, 2014, https://doi.org/10.1016/j.heliyon.2021.e07615