DOI QR코드

DOI QR Code

MR Findings of the Osteofibrous Dysplasia

  • Jung, Joon-Yong (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Jee, Won-Hee (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Hong, Sung Hwan (Department of Radiology, Seoul National University College of Medicine) ;
  • Kang, Heung Sik (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Chung, Hye Won (Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ryu, Kyung-Nam (Department of Radiology, Kyung Hee University College of Medicine) ;
  • Kim, Jee-Young (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Im, Soo-A (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Park, Jeong-Mi (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Sung, Mi-Sook (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Lee, Yeon-Soo (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Hong, Suk-Joo (Department of Radiology, Korea University College of Medicine) ;
  • Jung, Chan-Kwon (Department of Pathology, College of Medicine, The Catholic University of Korea) ;
  • Chung, Yang-Guk (Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea)
  • Received : 2013.05.13
  • Accepted : 2013.09.07
  • Published : 2014.02.01

Abstract

Objective: The aim of this study was to describe MR findings of osteofibrous dysplasia. Materials and Methods: MR images of 24 pathologically proven osteofibrous dysplasia cases were retrospectively analyzed for a signal intensity of the lesion, presence of intralesional fat signal, internal hypointense band, multilocular appearance, cortical expansion, intramedullary extension, cystic area, cortical breakage and extraosseous extension, abnormal signal from the adjacent bone marrow and soft tissue and patterns of contrast enhancement. Results: All cases of osteofibrous dysplasia exhibited intermediate signal intensity on T1-weighted images. On T2-weighted images, 20 and 4 cases exhibited heterogeneously intermediate and high signal intensity, respectively. Intralesional fat was identified in 12% of the cases. Internal low-signal bands and multilocular appearance were observed in 91%. Cortical expansion was present in 58%. Intramedullary extension was present in all cases, and an entire intramedullary replacement was observed in 33%. Cortical breakage (n = 3) and extraosseous mass formation (n = 1) were observed in cases with pathologic fractures only. A cystic area was observed in one case. Among 21 cases without a pathologic fracture, abnormal signal intensity in the surrounding bone marrow and adjacent soft tissue was observed in 43% and 48%, respectively. All cases exhibited diffuse contrast enhancement. Conclusion: Osteofibrous dysplasia exhibited diverse imaging features ranging from lesions confined to the cortex to more aggressive lesions with complete intramedullary involvement or perilesional marrow edema.

Keywords

References

  1. Campanacci M, Laus M. Osteofibrous dysplasia of the tibia and fibula. J Bone Joint Surg Am 1981;63:367-375 https://doi.org/10.2106/00004623-198163030-00007
  2. Campbell CJ, Hawk T. A variant of fibrous dysplasia (osteofibrous dysplasia). J Bone Joint Surg Am 1982;64:231-236 https://doi.org/10.2106/00004623-198264020-00013
  3. Mirra JM, Picci P. Osteofibrous dysplasia (juvenile adamantinoma?). In: Mirra JM, ed. Bone Tumors-Clinical, Radiologic, and Pathologic Correlations. Philadelphia: Lea & Febiger, 1989:1217-1231
  4. Resnick D, Kyriakos M, Greenway GD. Tumors and tumor-like lesions of bone: Imaging and pathology of specific lesions. In: Resnick D, ed. Diagnosis of Bone and Joint Disorders, 4th ed. Philadelphia: Saunders, 2002:3796-3800
  5. Goergen TG, Dickman PS, Resnick D, Saltzstein SL, O'Dell CW, Akeson WH. Long bone ossifying fibromas. Cancer 1977;39:2067-2072 https://doi.org/10.1002/1097-0142(197705)39:5<2067::AID-CNCR2820390524>3.0.CO;2-4
  6. Park YK, Unni KK, McLeod RA, Pritchard DJ. Osteofibrous dysplasia: clinicopathologic study of 80 cases. Hum Pathol 1993;24:1339-1347 https://doi.org/10.1016/0046-8177(93)90268-L
  7. Dominguez R, Saucedo J, Fenstermacher M. MRI findings in osteofibrous dysplasia. Magn Reson Imaging 1989;7:567-570 https://doi.org/10.1016/0730-725X(89)90413-X
  8. Khanna M, Delaney D, Tirabosco R, Saifuddin A. Osteofibrous dysplasia, osteofibrous dysplasia-like adamantinoma and adamantinoma: correlation of radiological imaging features with surgical histology and assessment of the use of radiology in contributing to needle biopsy diagnosis. Skeletal Radiol 2008;37:1077-1084 https://doi.org/10.1007/s00256-008-0553-1
  9. Gleason BC, Liegl-Atzwanger B, Kozakewich HP, Connolly S, Gebhardt MC, Fletcher JA, et al. Osteofibrous dysplasia and adamantinoma in children and adolescents: a clinicopathologic reappraisal. Am J Surg Pathol 2008;32:363-376 https://doi.org/10.1097/PAS.0b013e318150d53e
  10. Springfield DS, Rosenberg AE, Mankin HJ, Mindell ER. Relationship between osteofibrous dysplasia and adamantinoma. Clin Orthop Relat Res 1994;(309):234-244
  11. Murphey MD, wan Jaovisidha S, Temple HT, Gannon FH, Jelinek JS, Malawer MM. Telangiectatic osteosarcoma: radiologic-pathologic comparison. Radiology 2003;229:545-553 https://doi.org/10.1148/radiol.2292021130
  12. Goto T, Kojima T, Iijima T, Yokokura S, Kawano H, Yamamoto A, et al. Osteofibrous dysplasia of the ulna. J Orthop Sci 2001;6:608-611 https://doi.org/10.1007/s007760100021
  13. Nakashima Y, Yamamuro T, Fujiwara Y, Kotoura Y, Mori E, Hamashima Y. Osteofibrous dysplasia (ossifying fibroma of long bones). A study of 12 cases. Cancer 1983;52:909-914 https://doi.org/10.1002/1097-0142(19830901)52:5<909::AID-CNCR2820520528>3.0.CO;2-#
  14. Williams HK, Mangham C, Speight PM. Juvenile ossifying fibroma. An analysis of eight cases and a comparison with other fibro-osseous lesions. J Oral Pathol Med 2000;29:13-18 https://doi.org/10.1034/j.1600-0714.2000.290103.x
  15. Kahn LB. Adamantinoma, osteofibrous dysplasia and differentiated adamantinoma. Skeletal Radiol 2003;32:245-258 https://doi.org/10.1007/s00256-003-0624-2
  16. Teo HE, Peh WC, Akhilesh M, Tan SB, Ishida T. Congenital osteofibrous dysplasia associated with pseudoarthrosis of the tibia and fibula. Skeletal Radiol 2007;36 Suppl 1:S7-S14 https://doi.org/10.1007/s00256-006-0177-2
  17. Wang JW, Shih CH, Chen WJ. Osteofibrous dysplasia (ossifying fibroma of long bones). A report of four cases and review of the literature. Clin Orthop Relat Res 1992;(278):235-243
  18. Jee WH, Choe BY, Kang HS, Suh KJ, Suh JS, Ryu KN, et al. Nonossifying fibroma: characteristics at MR imaging with pathologic correlation. Radiology 1998;209:197-202 https://doi.org/10.1148/radiology.209.1.9769832
  19. Jee WH, Choi KH, Choe BY, Park JM, Shinn KS. Fibrous dysplasia: MR imaging characteristics with radiopathologic correlation. AJR Am J Roentgenol 1996;167:1523-1527 https://doi.org/10.2214/ajr.167.6.8956590
  20. Utz JA, Kransdorf MJ, Jelinek JS, Moser RP Jr, Berrey BH. MR appearance of fibrous dysplasia. J Comput Assist Tomogr 1989;13:845-851 https://doi.org/10.1097/00004728-198909000-00018
  21. Van der Woude HJ, Hazelbag HM, Bloem JL, Taminiau AH, Hogendoorn PC. MRI of adamantinoma of long bones in correlation with histopathology. AJR Am J Roentgenol 2004;183:1737-1744 https://doi.org/10.2214/ajr.183.6.01831737
  22. Ishida T, Iijima T, Kikuchi F, Kitagawa T, Tanida T, Imamura T, et al. A clinicopathological and immunohistochemical study of osteofibrous dysplasia, differentiated adamantinoma, and adamantinoma of long bones. Skeletal Radiol 1992;21:493-502
  23. Markel SF. Ossifying fibroma of long bone: its distinction from fibrous dysplasia and its association with adamantinoma of long bone. Am J Clin Pathol 1978;69:91-97 https://doi.org/10.1093/ajcp/69.1.91
  24. Mori H, Yamamoto S, Hiramatsu K, Miura T, Moon NF. Adamantinoma of the tibia. Ultrastructural and immunohistochemic study with reference to histogenesis. Clin Orthop Relat Res 1984;(190):299-310
  25. Sweet DE, Vinh TN, Devaney K. Cortical osteofibrous dysplasia of long bone and its relationship to adamantinoma. A clinicopathologic study of 30 cases. Am J Surg Pathol 1992;16:282-290 https://doi.org/10.1097/00000478-199203000-00009
  26. Bloem JL, van der Heul RO, Schuttevaer HM, Kuipers D. Fibrous dysplasia vs adamantinoma of the tibia: differentiation based on discriminant analysis of clinical and plain film findings. AJR Am J Roentgenol 1991;156:1017-1023 https://doi.org/10.2214/ajr.156.5.2017924
  27. Czerniak B, Rojas-Corona RR, Dorfman HD. Morphologic diversity of long bone adamantinoma. The concept of differentiated (regressing) adamantinoma and its relationship to osteofibrous dysplasia. Cancer 1989;64:2319-2334 https://doi.org/10.1002/1097-0142(19891201)64:11<2319::AID-CNCR2820641123>3.0.CO;2-0
  28. Hazelbag HM, Taminiau AH, Fleuren GJ, Hogendoorn PC. Adamantinoma of the long bones. A clinicopathological study of thirty-two patients with emphasis on histological subtype, precursor lesion, and biological behavior. J Bone Joint Surg Am 1994;76:1482-1499 https://doi.org/10.2106/00004623-199410000-00008
  29. Kransdorf MJ, Stull MA, Gilkey FW, Moser RP Jr. Osteoid osteoma. Radiographics 1991;11:671-696 https://doi.org/10.1148/radiographics.11.4.1887121
  30. Tehranzadeh J, Wong E, Wang F, Sadighpour M. Imaging of osteomyelitis in the mature skeleton. Radiol Clin North Am 2001;39:223-250 https://doi.org/10.1016/S0033-8389(05)70275-X
  31. Lopez-Barea F, Hardisson D, Rodriguez-Peralto JL, Sanchez-Herrera S, Lamas M. Intracortical hemangioma of bone. Report of two cases and review of the literature. J Bone Joint Surg Am 1998;80:1673-1678 https://doi.org/10.2106/00004623-199811000-00015
  32. Mahnken AH, Nolte-Ernsting CC, Wildberger JE, Heussen N, Adam G, Wirtz DC, et al. Aneurysmal bone cyst: value of MR imaging and conventional radiography. Eur Radiol 2003;13:1118-1124
  33. Kroon HM, Schurmans J. Osteoblastoma: clinical and radiologic findings in 98 new cases. Radiology 1990;175:783-790 https://doi.org/10.1148/radiology.175.3.2343130
  34. Ladermann A, Stern R, Ceroni D, De Coulon G, Taylor S, Kaelin A. Unusual radiologic presentation of monostotic fibrous dysplasia. Orthopedics 2008;31:282

Cited by

  1. A rare case of pure primary hemangioma of the scapula: A case report vol.10, pp.4, 2014, https://doi.org/10.3892/ol.2015.3596
  2. Congenital Osteofibrous Dysplasia, Involving the Tibia of a Neonate vol.73, pp.5, 2014, https://doi.org/10.3348/jksr.2015.73.5.307
  3. Plexiform neurofibroma causing an ossifying subperiosteal haematoma: a rare case in the tibia of an 11-year-old girl vol.46, pp.10, 2014, https://doi.org/10.1007/s00256-017-2689-3
  4. Identification and characterization of NF1 and non-NF1 congenital pseudarthrosis of the tibia based on germline NF1 variants: genetic and clinical analysis of 75 patients vol.14, pp.1, 2014, https://doi.org/10.1186/s13023-019-1196-0
  5. Tumorähnliche Knochenläsionen des Skeletts vol.60, pp.7, 2014, https://doi.org/10.1007/s00117-020-00705-2
  6. Osteofibrous dysplasia: A rare case in 3-day-old female vol.17, pp.3, 2022, https://doi.org/10.1016/j.radcr.2021.12.026