Hemodynamic Evaluation of Acute Mitral Valve Insufficiency Model induced by Chordae Tendinae Rupture in Normal Dogs

개에서 건삭파열로 유발한 급성 이첨판 폐쇄부전 모델의 혈류역학적 평가

  • Kim, Sehoon (Royal Animal Medical and Referral Center) ;
  • Kim, Nam-Soo (College of Veterinary Medicine, Chonbuk National University) ;
  • Lee, Ki-Chang (College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Jong Min (Veterinary Emergency and Specialty Hospital) ;
  • Kim, Min-Su (College of Veterinary Medicine, Chonbuk National University)
  • Accepted : 2014.09.29
  • Published : 2014.10.31

Abstract

The study was to observe hemodynamic alterations of cardiac function to design a model of canine mitral valve insufficiency (MVI) based on chordae tendinae rupture (CTR). Ten healthy beagles with normal heart function were used in this study. To measure hemodynamics, the patient monitor was equipped for invasive blood pressure and a Swan-Ganz catheter. Hemodynamic alterations were checked promptly during CTR procedures. MVI model was made by transection of the chordae tendinae with small arthroscopy hook knife through $5^{th}$ intercostal open chest. Color Doppler at the level of the mitral valve showed high-velocity regurgitant flow immediately after CTR at intraoperative echocardiography. In hemodynamic measurements, pulmonary capillary wedge pressure (PCWP) was significantly increased, while mean arterial pressure (MAP), venous pressure (VP), pulmonary arterial pressure (PAP), cardiac output (CO) and cardiac index (CI) were significantly decreased after CTR. It was known that the left atrium was overloaded by regurgitant volume from the left ventricle. In conclusion, the MVI model induced by CTR technique in this study should be used as suitable one for the effective research of canine mitral valve disease. Further study should be needed to measure the chronic alternation of mitral valve in the model.

본 연구는 개에서 건삭파열로 유발한 급성 이첨판 폐쇄부전 모델의 혈류역학적 변화를 관찰하는 것이다. 이 연구는 10마리의 정상 심장기능을 가진 비글견에서 실시되었다. 직접혈압측정법과 Swan-Ganz 카테터를 통해 건삭을 실험적으로 파열시키는 기간동안 혈류역학적 지표 변화를 진행하였다. 이첨판 폐쇄부전 모델을 만들기 위해 5번 늑간으로 접근하여 관절경에 사용하는 작은 훅나이프를 사용하여 건삭을 파열하였다. 수술 중 칼라 도플러 영상 검사를 통해 이첨판 역류를 확인하였다. 혈류역학적 지표를 측정한 결과 폐모세혈관쇄기압은 유의적으로 증가하였지만, 평균동맥압, 정맥압, 폐동맥압, 심박출량, 심박출 지수는 건삭 파열 후에 유의적으로 감소한다는 것을 발견하였다. 이것은 건산파열로 인해 좌심실로 부터 역류된 혈액이 좌심방에 과부하를 일으킨다는 것을 나타내는 것이다. 본 연구를 통해 개에서 급성 이첨판 폐쇄부전 모델을 만드는데 있어 건삭파열방법이 효과적인 것을 알 수 있었고, 이첨판 역류 유발 후 시간이 지나면 만성 이첨판 부전증으로 진행할 수 있을 것으로 생각되며, 차후 판막의 만성적 변화 양상을 연구하는데 도움을 줄 수 있을 것으로 생각됩니다.

Keywords

References

  1. Bonagura JD, Miller MW, Darke PG. Doppler echocardiography. I. Pulsed-wave and continuous-wave examinations. Vet Clin North Am Small Anim Pract 1998; 28: 1325-1359. https://doi.org/10.1016/S0195-5616(98)50126-X
  2. Daimon M, Shiota T, Gillinov AM, Hayase M, Ruel M, Cohn WE, Blacker SJ, Liddicoat JR. Percutaneous mitral valve repair for chronic ischemic mitral regurgitation: a realtime three-dimensional echocardiographic study in an ovine model. Circulation 2005; 111: 2183-2189. https://doi.org/10.1161/01.CIR.0000163547.03188.AC
  3. Dixon JA, Spinale FG. Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2009; 2: 262-271 https://doi.org/10.1161/CIRCHEARTFAILURE.108.814459
  4. Fox PR. Pathology of myxomatous mitral valve disease in the dog. J Vet Cardiol 2012; 14: 103-126. https://doi.org/10.1016/j.jvc.2012.02.001
  5. Godje O, Peyerl M, Seebauer T, Lamm P, Mair H, Reichart B. Central venous pressure, pulmonary capillary wedge pre-ssure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 1998; 13: 533-539. https://doi.org/10.1016/S1010-7940(98)00063-3
  6. Haggstrom J, Duelund Pedersen H, Kvart C. New insights into degenerative mitral valve disease in dogs. Vet Clin North Am Small Anim Pract 2004; 34: 1209-1226. https://doi.org/10.1016/j.cvsm.2004.05.002
  7. Hoit BD, Jones M, Eidbo EE, Elias W, Sahn DJ. Sources of variability for Doppler color flow mapping of regurgitant jets in an animal model of mitral regurgitation. J Am Coll Cardiol 1989; 13: 1631-1636. https://doi.org/10.1016/0735-1097(89)90359-8
  8. Ishikawa T, Fukushima R, Suzuki S, Miyaishi Y, Nishimura T, Hira S, Hamabe L, Tanaka R. Echocardiographic estimation of left atrial pressure in beagle dogs with experimentally- induced mitral valve regurgitation. J Vet Med Sci. 2011; 73: 1015-1124. https://doi.org/10.1292/jvms.10-0141
  9. Leroux AA, Moonen ML, Pierard LA, Kolh P, Amory H. Animal models of mitral regurgitation induced by mitral valve chordae tendineae rupture. J Heart Valve Dis 2012; 21: 416-423.
  10. Liddicoat JR, Mac Neill BD, Gillinov AM, Cohn WE, Chin CH, Prado AD, Pandian NG, Oesterle SN. Percutaneous mitral valve repair: a feasibility study in an ovine model of acute ischemic mitral regurgitation. Catheter Cardiovasc Interv 2003; 60: 410-416. https://doi.org/10.1002/ccd.10662
  11. Liel-Cohen N, Guerrero JL, Otsuji Y, Handschumacher MD, Rudski LG, Hunziker PR, Tanabe H, Scherrer-Crosbie M, Sullivan S, Levine RA. Design of a new surgical approach for ventricular remodeling to relieve ischemic mitral regurgitation: insights from 3- dimensional echocardiography. Circulation 2000; 101: 2756-2763. https://doi.org/10.1161/01.CIR.101.23.2756
  12. Oyama MA, Sisson DD, Bulmer BJ, Constable PD. Echocardiographic estimation of mean left atrial pressure in a canine model of acute mitral valve insufficiency. J Vet Intern Med 2004; 18: 667-672. https://doi.org/10.1111/j.1939-1676.2004.tb02604.x
  13. Pedersen HD, Lorentzen KA, Kristensen BO. Echocardiographic mitral valve prolapse in cavalier King Charles spaniels: epidemiology and prognostic significance for regurgitation. Vet Rec 1999; 144: 315-320. https://doi.org/10.1136/vr.144.12.315
  14. Serres F, Chetboul V, Tissier R, Sampedrano CC, Gouni V, Nicolle AP, Pouchelon JL. Chordae tendineae rupture in dogs with degenerative mitral valve disease: prevalence, survival, and prognostic factors (114 cases, 2001-2006). J Vet Intern Med 2007; 21: 258-264.
  15. Yoran C, Yellin EL, Becker RM, Gabbay S, Frater RW, Sonnenblick EH. Dynamic aspects of acute mitral regurgitation: effects of ventricular volume, pressure and contractility on the effective regurgitant orifice area. Circulation 1979; 60: 170-176. https://doi.org/10.1161/01.CIR.60.1.170