DOI QR코드

DOI QR Code

염화칼슘 농도에 따른 복자기의 생장 및 생리적 반응 특성

The responses of Growth and Physiological traits of Acer triflorum on Calcium Chloride ($CaCl_2$) Concentration

  • 권민영 (국립산림과학원 생태연구과) ;
  • 김선희 (국립산림과학원 생태연구과) ;
  • 성주한 (국립산림과학원 생태연구과)
  • Kwon, Min-Young (Divison of Forest Ecology, Korea Forest Research Institute) ;
  • Kim, Sun-Hee (Divison of Forest Ecology, Korea Forest Research Institute) ;
  • Sung, Joo-Han (Divison of Forest Ecology, Korea Forest Research Institute)
  • 투고 : 2014.08.21
  • 심사 : 2014.10.17
  • 발행 : 2014.10.31

초록

겨울철 눈이 내린 도로의 동결을 방지하기 위해 염화칼슘을 제설제로 사용하는데 이것은 용해되어 도로주변의 수목에 피해를 줄 수 있다. 본 연구는 겨울철 제설제로 이용되는 염화칼슘 처리에 따른 복자기의 생장과 생리적 반응을 알아보기 위해 생장 특성, 광색소함량, 광합성 효율, 엽록소형광반응을 측정하고 식물체 및 토양 분석을 하였다. 실험구는 무처리(대조구), 9mM(0.5%), 18mM(1.0%), 54mM(3.0%)의 총 4개의 처리구로 나누어 용해액을 신초가 나기 전, 일주일 간격으로 2회 500ml씩 살포하였다. 염화칼슘 처리 결과, 처리 후 30일째 염화칼슘 농도가 증가함에 따라 0.5% 처리구부터 총엽록소함량, 광합성율, 증산율, 기공전도도, 광계 II활성이 감소하였고 특히 3.0% 처리구에서 두드러졌다. 반면, 엽록소a/b는 염화칼슘 농도가 높아짐에 따라 증가하였고 수분이용효율은 1.0% 처리구에서부터 증가하였다. 처리 후 50일째 3.0% 처리구는 고사하여 측정할 수 없었고, 모든 처리구에서 대조구에 비해 엽록소a, 엽록소b, 총엽록소함량, 광계II활성, 광계II광화학효율이 감소하였다. 이러한 결과는 $Ca^{2+}$$Cl^-$이 잎과 토양에 축적되어 수분의 흡수와 전자전달의 방해에 기인한 것으로 염화칼슘 처리구에서 수고생장율의 50% 이상 저하를 가져왔다. 염화칼슘의 처리 농도와 시기에 따른 차이는 있었지만 모든 염화칼슘 처리구에서 생장율은 감소하고 생리적 활성은 둔화되었고 이는 시간이 경과함에 따라 심해졌다.

To prevent freezing of the road by fallen snow, Calcium chloride($CaCl_2$) as a deicer is used to very often and it can be harmful to roadside trees. This study was conducted to investigate the effects of Calcium chloride($CaCl_2$) as a deicer on growth and physiological traits of Acer triflorum according to different concentration of $CaCl_2$. We measured growth, chlorophyll contents, gas exchangement characteristics, chlorophyll fluorescence and mineral nutrition concentration in plant and soil. The experimental group was composed of four treatments including 0mM(control), 9mM(0.5 %), 18mM(1.0 %), 54mM(3.0 %). Before germinating new shoot, the dissolution of $CaCl_2$ was irrigated twice interval of a week. At 30 days after treatment, all treatments decreased total cholorophyll content, photosynthetic rate, transpiration rate, stomatal conductance and photochemical efficiency($F_v/F_m$) with increasing concentration of $CaCl_2$ and especially, they significantly reduced in 3.0 % treatment. In contrast, chlorophyll a/b ratio increased with an increase of $CaCl_2$ concentration and water use efficiency increased in 1.0 % and 3.0 % treatments. At 50 days after treatment, all treatments were decreased in chl a, chl b, total chlorophyll content, carotenoid content, photosynthetic capacity, photochemical efficiency($F_v/F_m$) and quantum yield of photosystem II(${\Phi}_{PSII}$) compared with control and 3.0 % treatments were withered. $Ca^{2+}$ and $Cl^-$ were accumulated in leaves and soil, which inhibited water absorption and electron transport and it caused the reduction of height growth rate more than 50 %. Although there was a little difference according to time and $CaCl_2$ concentration, all treatments decreased in growth rate and physiological activity slowed down. As time passed, these results got worse. Therefore we need to take a measure earlier in order to minimize damage of trees.

키워드

참고문헌

  1. Aghaleh, M., V. Niknam and H. Ebrahimzadeh (2009) Salt stress effect on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Bio. Plant. 53(2): 243-248. https://doi.org/10.1007/s10535-009-0046-7
  2. Anderson, J. M. (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Ann. Rev. Plant Physiol. 37:93-136. https://doi.org/10.1146/annurev.pp.37.060186.000521
  3. Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15. https://doi.org/10.1104/pp.24.1.1
  4. Baker, N. R. (2008) Chlorophyll fluorescence a probe of photosynthesis in vivo. Ann. Rev. PlantBiol. 59: 89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
  5. Barhoumia, Z., W. Djebalib, A. Smaouic, W. Chaibib and C. Abdellya (2007) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J. Plant Physiol. 164(7): 842-850. https://doi.org/10.1016/j.jplph.2006.05.008
  6. Bernstein, L., L. E. Francois and R. A. Clark (1974) Interactive effects of salinity and fertility on yields of grains and vegetables. Agron. J. 66(3): 412-421. https://doi.org/10.2134/agronj1974.00021962006600030023x
  7. Bernstein, L. and H. E. Hayward (1958) Physiology of salt tolerance. Ann. Rev. PlantPhysiol. 9: 25-46. https://doi.org/10.1146/annurev.pp.09.060158.000325
  8. Binkley, D., R. Stottlemyer, F. Suarez and J. Cortina (1994) Soil nitrogen availability in some arctic ecosystems in northwest Alaska: responses to temperature and moisture. Ecoscience 1: 64-70. https://doi.org/10.1080/11956860.1994.11682229
  9. Boughalleb, F., M. Denden and B. B. Tiba (2008) Photosystem-II photochemistry and physiological parameters of three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea under salt stress. Acta Physiol.Plant. 31: 463-476.
  10. Brugnoli, E. and O. Bjorkman (1992) Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187: 335-347.
  11. Chaves, M. M., J. Flexas and C. Pinheiro (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103(4): 551-560. https://doi.org/10.1093/aob/mcn125
  12. Chow, W. S., M. C. Ball and J. M. Anderson (1990) Growth and photosynthetic responses of spinach to salinity: implications of $K^+$ nutrition for salt tolerance. Aust. J. Plant Physiol. 17(5): 563-578. https://doi.org/10.1071/PP9900563
  13. Downton, W. J. S., W. J. R. Grant and S. P. Robinson (1985) Photosynthetic and stomatal responses of spinach leaves to salt stress. Plant Physiol. 77: 85-88.
  14. Gama, P. B., S. Inanaga, K. Tanaka and R. Nakazawa (2007) Physiological response of common bean (Phaseolus Vulg. L.) seedlings to salinity stress. African. J. Biotechnol. 6(2): 79-88.
  15. Garg, N. and R. Singla (2004) Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. Braz. J. Plant Physiol. 16: 37-146.
  16. Grattan, S. R. and C. M. Grieve (1999) Salinity-mineral nutrient relations in horticultural crops. Sci. Hort. 78: 127-157.
  17. Hichem, H., E. A. Naceur and D. Mounir (2009) Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica 47: 517-526. https://doi.org/10.1007/s11099-009-0077-5
  18. Hughes, A. P. and P. R. Freeman (1967) Growth analysis using frequent small harvests. J. appl. ecol. 4: 553-560. https://doi.org/10.2307/2401356
  19. Jaleel, C. A., B. Sankar, R. Sridharan and R. Panneereslvam (2008) Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk. J. Biol. 32:79-83.
  20. Jefferies, R. A.(1994) Drought and chlorophyll fluorescence in field grown potato (Solanum tuberosum). Plant Physiol. 90: 93-97. https://doi.org/10.1111/j.1399-3054.1994.tb02197.x
  21. Kautsky, H. and A. Hirsch(1931) Neue Versuche zur Kohlens aureassimilation. Naturwissenschaften 19(48): 964.
  22. Kim P. G. and E. J. Lee (2001) Ecophysiology of Photosynthesis 1: effects of light intensity and intercellular $CO_2$ pressure on photosynthesis. Korean. J. Agric. For. Meteorol. 3(2): 126-133. (in Korean with English abstract)
  23. Korea Biodiversity Information System, http://www.nature.go.kr (2014. 07. 01)
  24. Krause, G. H. and E. Weis (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. PlantBiol. 42: 313-349.
  25. Kwon, H. B. and T. J. Kim (2008) Evaluation of the Coating Liquid Sprayed on Landscape Plants to Prevent De-icing Stresses -Focus on Chlorophyll Fluorescence Analysis-. J. Korean. Inst. Landsc. Archit. 35(6): 29-36. (in Korean with English abstract)
  26. Lee, S. Y., W. T. Kim, J. H. Ju and Y. H. Yoon (2013) Effect of calcium chloride concentration on roadside ground cover plant growth. J. Korean. Inst. Landsc. Archit. 41(4): 17-23. (in Korean with English abstract) https://doi.org/10.9715/KILA.2013.41.4.017
  27. Liu, J. and D. C. Shi (2010) Photosynthesis, chlorophyll fluorescence, in organic ion and organic acid accumulations of sunflower in response to salt and salt-alkaline mixed stress. Photosynthetica 48: 127-134. https://doi.org/10.1007/s11099-010-0017-4
  28. Moradi, F. and A. M. Ismail (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS scavenging system to salt stress during seedling and reproductive stages in rice. Ann. Bot. 99: 1161-1173. https://doi.org/10.1093/aob/mcm052
  29. Morsy, M. H. (2003) Growth ability of mango cultivars irrigated with saline water. Acta horticulture 609: 475-482.
  30. Parida, A., A. B. Das and P. Das (2002) NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Biol. Plant.45(1): 28-36. https://doi.org/10.1007/BF03030429
  31. Parida, A. K., A. B. Das and B. Mittra (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18: 167-174. https://doi.org/10.1007/s00468-003-0293-8
  32. Percival, G C. and G.A. Fraser (2001) Measurement of the salinity and freezing tolerance of Crataegus genotypes using chlorophyll fluorescence. J. Arboric. 27(5):233-245.
  33. Pinheiro, H. A., J. V. Silva, L. Endres, V. M. Ferreira, C. A. Camara, F. F. Cabral, J. F. Oliveira, L. W. T. de Carvalho, J. M. dos Santos and B.G. dos Santos Filho (2008) Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Ind. Crops Prod. 27: 385-392. https://doi.org/10.1016/j.indcrop.2007.10.003
  34. Qiu, N. W., Q. T. Lu and C. M. Lu (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol. 159: 479-486. https://doi.org/10.1046/j.1469-8137.2003.00825.x
  35. Reddy, M. P. and A. B. Vora (1986) Changes in pigment composition, hill reaction activity and saccharide metabolism in bajra (Pennisetum typhoides S&H) leaves under NaCl salinity. Photosynthetica 20: 50-55.
  36. Robinson, S. P., W. J. S. Downton and J. A. Millhouse (1983) Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol. 73: 238-242. https://doi.org/10.1104/pp.73.2.238
  37. Schreiber, U. and W. Bilger (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Progr. Bot. 54: 151-173.
  38. Seemann, J. R. and C. Critchley (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164: 151-162. https://doi.org/10.1007/BF00396077
  39. Shin, S. S., S. D. Park, H. S. Kim and K. S. Lee (2010) Effects of calcium chloride and eco-friendly deicer on the plant growth. J. Korean. Soc. Environ. Eng. 32(5): 487-498. (in Korean with English abstract)
  40. Silva, E. N., R. B. Ribeiro, S. L. Ferreira-Silva, R. A. Viegas and J. A. G. Silveira (2010) Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J. Arid. Environ. 74: 1130-1137. https://doi.org/10.1016/j.jaridenv.2010.05.036
  41. Slama, I., T. Ghnaya, A. Savoure and C. Abdelly (2008) Combined effects of long term salinity and soil drying on growth, water relations, nuturient status and proline accumulation of Sesuvium portulacastrum. Comptes rendus biologies 331: 442-451. https://doi.org/10.1016/j.crvi.2008.03.006
  42. Stepien, P. and G. Klobus (2006) Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant.50:610-616. https://doi.org/10.1007/s10535-006-0096-z
  43. Sudhir, P. and S. D. S. Murthy (2004) Effects of salt stress on basic porcesses of photosynthesis. Photosynthetica 42(4): 481-486. https://doi.org/10.1007/S11099-005-0001-6
  44. Sultana, N., T. Ikeda and R. Itoh (1999) Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ. exp. Bot. 42: 211-220. https://doi.org/10.1016/S0098-8472(99)00035-0
  45. Sung J. H., S. M. Je, S. H. Kim and Y. K. Kim (2009) Effect of calcium chloride ($CaCl_2$) on the characteristics of photosynthetic apparatus, stomatal conductance, and fluorescence image of the leaves of Cornus kousa. Korean. J. Agric. For. Meteorol. 11(4): 143-150. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.4.143
  46. Sung J. H., S. M. Je, S. H. Kim and Y. K. Kim (2010) Effect of calcium chloride ($CaCl_2$) on chlorophyll fluorescence image and photosynthetic apparatus in the leaves of Prunus sargentii. J. Korean. For. Soc. 99(6): 922-928. (in Korean with English abstract)
  47. Takahashi, S. and N. Murata (2008) How do environmental stresses accelerate photoinhibition. Trends. Plant Sci. 13:178-182. https://doi.org/10.1016/j.tplants.2008.01.005
  48. Yang, X. and C. Lu (2005) Photosynthesis is improved by exogenous glycinebetaine in salt‐stressed maize plants. Physiol. Plant. 124: 343-352. https://doi.org/10.1111/j.1399-3054.2005.00518.x