DOI QR코드

DOI QR Code

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy

붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구

  • Jung, Joo-Young (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Yoon, Do-Kun (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Han, Seong-Min (Department of Health Science, School of Child and Social Welfare, The Kyungwoon University of Korea) ;
  • Jang, HongSeok (Department of Radiation Oncology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital) ;
  • Suh, Tae Suk (Department of Biomedical Engineering, The Catholic University of Korea)
  • 정주영 (가톨릭대학교 의과대학 의공학교실) ;
  • 윤도군 (가톨릭대학교 의과대학 의공학교실) ;
  • 한성민 (경운대학교 사회과학대학 아동사회복지학부) ;
  • 장홍석 (서울성모병원 방사선종양학과) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실)
  • Received : 2014.07.07
  • Accepted : 2014.08.07
  • Published : 2014.09.30

Abstract

The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.

본 연구의 목적은 붕소 중성자 포획 치료 시 집적된 붕소 영역에서 중성자 선속의 변화와 그에 따른 방출된 즉발 감마선의 검출 시뮬레이션을 통하여 치료 영역에 대한 영상화의 가능성을 확인하고자 함이다. 전산 모사를 통하여 (1) 붕소 유무에 따른 중성자의 영향, (2) 내부와 외부에서의 즉발 감마선량 검출, (3) 즉발 감마선에 대한 에너지 스펙트럼 검출을 수행하였다. 모든 전산 모사는 Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA)를 이용하여 가상의 물 팬텀과 열중성자(thermal neutron) 소스, 붕소 영역을 지정하였다. 열중성자의 에너지는 1 eV 이하의 에너지였으며 선속은 2,000,000 n/sec.로 설정하였다. 이 때, 발생된 즉발 감마선의 검출은 물 팬텀과 수직 방향으로 위치시키고 납으로 둘러싸인 lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) 섬광체 검출기를 이용하였다. 붕소가 존재하는 영역인 5 cm 깊이에서의 28 분할로서 대략 0.18 cm의 bin을 도출하여 붕소 영역의 얕은 깊이에서부터 급격하게 저하되는 것을 확인하였다. 또한 붕소 영역이 시작되는 지점인 9 cm 깊이에서 감마선의 피크 레벨을 확인하였다. 그리고 478 keV 지점에서 정확한 즉발 감마선 피크가 관찰되는 것을 확인하였다. 478 keV의 즉발 감마선 피크는 41 keV의 반치폭으로 에너지 분해능 값은 8.5%로 측정되었다. 결론적으로 붕소 중성자 포획 치료 시 발생되는 즉발 감마선의 계측으로 치료가 행해지는 부위를 감마 카메라 또는 단일 광자 방출 단층 촬영 기기에서 영상화할 수 있는 가능성을 확인하였다.

Keywords

References

  1. Ono K, Kinashi Y, Masunaga S, Suzuki M, Takagaki M: Electroporation increases the effect of borocaptate (10B-BSH) in neutron capture therapy. Int. J. Radiat. Oncol. Biol. Phys. 42:823-826 (1998) https://doi.org/10.1016/S0360-3016(98)00311-3
  2. Barth RF, Soloway AH, Goodman JH, Gahbauer RA, Gupta N, Blue TE, et al: Boron neutron capture therapy of brain tumors: an emerging therapeutic modality. Neurosurgery 44:433-503 (1999) https://doi.org/10.1097/00006123-199903000-00001
  3. Barth RF, Grecula JC, Yang W, Rotaru JH, Nawrocky M, Gupta N, et al: Combination of boron neutron capture therapy and external beam radiotherapy for brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 58:267-277 (2004) https://doi.org/10.1016/S0360-3016(03)01613-4
  4. Sherlock Huang LC, Hsieh WY, Chen JY, et al: Drug delivery system design and development for boron neutron capture therapy on cancer treatment. Appl. Radiat. Isot. 88:89-93 (2014) https://doi.org/10.1016/j.apradiso.2013.12.025
  5. Yokoyama K, Miyatake S, Kajimoto Y, et al: Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT. J. Neurooncol. 78:227-232 (2006) https://doi.org/10.1007/s11060-005-9099-4
  6. Munck af Rosenschöld PM, Verbakel WFAR, Ceberg CP, et al: Toward clinical application of prompt gamma spectroscopy for in vivo monitoring of boron uptake in boron neutron capture therapy. Med. Phys. 28:787-795 (2001) https://doi.org/10.1118/1.1367281
  7. Kinashi Y, Masunaga S, Nagata K, et al: A bystander effect observed in boron neutron capture therapy: a study of the induction of mutations in the HPRT locus. Int. J. Radiat. Oncol. Biol. Phys. 68:508-514 (2007) https://doi.org/10.1016/j.ijrobp.2007.02.002
  8. Kankaanranta L, Seppala T, Koivunoro H, et al: Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a phase I/II trial. Int. J. Radiat. Oncol. Biol. Phys. 82:e67-e75 (2012) https://doi.org/10.1016/j.ijrobp.2010.09.057
  9. Culbertson, C. N., Green, S., Mason, A. J., Picton, D., Baugh, G., Hugtenburg, R. P., Nelson, J. M.: In-phantom characterisation studies at the Birmingham Accelerator-Generated epIthermal Neutron Source (BAGINS) BNCT facility. Appl. Radiat. Isot. 61:733-738 (2004) https://doi.org/10.1016/j.apradiso.2004.05.057
  10. Moss, R. L., Stecher-Rasmussen, F., Ravensberg, K., Constantine, G., Watkins, P.: Design, construction and installation of an epithermal neutron beam for BNCT at the high flux reactor Petten. Progress in Neutron Capture Therapy for Cancer, Springer US, 63-66 (1992)
  11. Bartoli, A., Belcari, N., Del Guerra, A., and Fabbri, S.: Simultaneous PET/SPECT imaging with the small animal scanner YAP-(S) PET. IEEE Nuclear Science Symposium Conference Record, 2007 NSS 5:3408-3413 (2007)
  12. Yao R, Deng X, Beaudoin J-F, Ma T, Cadorette J, Cao Z, et al: Initial Evaluation of LabPET/SPECT Dual Modality Animal Imaging System. IEEE Transactions on Nuclear Science, 60:76-81 (2013) https://doi.org/10.1109/TNS.2012.2233216
  13. Giuliano, D. R.: Neutron Flux Measurements and Calculations in the Gamma Irradiation Facility Using MCNPX. Doctoral dissertation, University of Cincinnati. (2010)
  14. Pidol L, Kahn-Harari A, Viana B, Virey E, Ferrand B, Dorenbos P, et al: High efficiency of lutetium silicate scintillators, Ce-doped LPS and LYSO crystals. IEEE Nuclear Science Symposium Conference Record, 2:886-890 (2003)
  15. Chewpraditkul, W., Swiderski, L., Moszynski, M., Szczesniak, T., Syntfeld-Kazuch, A., Wanarak, C., & Limsuwan, P: Scintillation properties of LuAG: Ce, YAG: Ce and LYSO: Ce crystals for gamma-ray detection. Nuclear Science, IEEE Transactions on, 56:3800-3805 (2009) https://doi.org/10.1109/TNS.2009.2033994

Cited by

  1. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT) vol.6, pp.9, 2014, https://doi.org/10.1063/1.4963741
  2. Prompt gamma ray imaging for verification of proton boron fusion therapy: A Monte Carlo study vol.32, pp.10, 2014, https://doi.org/10.1016/j.ejmp.2016.05.053
  3. Basic Mechanical and Neutron Shielding Performance of Mortar Mixed with Boron Compounds with Various Alkalinity vol.13, pp.11, 2021, https://doi.org/10.3390/su13116252