DOI QR코드

DOI QR Code

Degradation of the Transcription Factors NF-${\kappa}B$, STAT3, and STAT5 Is Involved in Entamoeba histolytica-Induced Cell Death in Caco-2 Colonic Epithelial Cells

  • Kim, Kyeong Ah (Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine) ;
  • Min, Arim (Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine) ;
  • Lee, Young Ah (Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine) ;
  • Shin, Myeong Heon (Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine)
  • Received : 2014.06.12
  • Accepted : 2014.08.13
  • Published : 2014.10.31

Abstract

Entamoeba histolytica is a tissue-invasive protozoan parasite causing dysentery in humans. During infection of colonic tissues, amoebic trophozoites are able to kill host cells via apoptosis or necrosis, both of which trigger IL-8-mediated acute inflammatory responses. However, the signaling pathways involved in host cell death induced by E. histolytica have not yet been fully defined. In this study, we examined whether calpain plays a role in the cleavage of pro-survival transcription factors during cell death of colonic epithelial cells, induced by live E. histolytica trophozoites. Incubation with amoebic trophozoites induced activation of m-calpain in a time- and dose-dependent manner. Moreover, incubation with amoebae resulted in marked degradation of STAT proteins (STAT3 and STAT5) and NF-${\kappa}B$ (p65) in Caco-2 cells. However, $I{\kappa}B$, an inhibitor of NF-${\kappa}B$, was not cleaved in Caco-2 cells following adherence of E. histolytica. Entamoeba-induced cleavage of STAT proteins and NF-${\kappa}B$ was partially inhibited by pretreatment of cells with a cell-permeable calpain inhibitor, calpeptin. In contrast, E. histolytica did not induce cleavage of caspase-3 in Caco-2 cells. Furthermore, pretreatment of Caco-2 cells with a calpain inhibitor, calpeptin (but not the pan-caspase inhibitor, z-VAD-fmk) or m-calpain siRNA partially reduced Entamoeba-induced DNA fragmentation in Caco-2 cells. These results suggest that calpain plays an important role in E. histolytica-induced degradation of NF-${\kappa}B$ and STATs in colonic epithelial cells, which ultimately accelerates cell death.

Keywords

References

  1. Stanley SL Jr. Amoebiasis. Lancet 2003; 361: 1025-1034. https://doi.org/10.1016/S0140-6736(03)12830-9
  2. Moncada D, Keller K, Ankri S, Mirelman D, Chadee K. Antisense inhibition of Entamoeba histolytica cysteine proteases inhibits colonic mucus degradation. Gastroenterology 2006; 130: 721-730. https://doi.org/10.1053/j.gastro.2005.11.012
  3. Bansal D, Ave P, Kerneis S, Frileux P, Boche O, Baglin AC, Dubost G, Leguern AS, Prevost MC, Bracha R, Mirelman D, Guillen N, Labruyere E. An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis. PLoS Negl Trop Dis 2009; 3: e551. https://doi.org/10.1371/journal.pntd.0000551
  4. Boettner DR, Petri WA. Entamoeba histolytica activates host cell caspases during contact-dependent cell killing. Curr Top Microbiol Immunol 2005; 289: 175-184.
  5. Blazquez S, Rigothier MC, Huerre M, Guillen N. Initiation of inflammation and cell death during liver abscess formation by Entamoeba histolytica depends on activity of the galactose/N-acetyl-D-galactosamine lectin. Int J Parasitol 2007; 37: 425-433. https://doi.org/10.1016/j.ijpara.2006.10.008
  6. Ragland BD, Ashley LS, Vaux DL, Petri WA. Entamoeba histolytica: target cells killed by trophozoites undergo DNA fragmentation which is not blocked by Bcl-2. Exp Parasitol 1994; 79: 460-467. https://doi.org/10.1006/expr.1994.1107
  7. Huston CD, Houpt ER, Mann BJ, Hahn CS, Petri WA. Caspase 3-dependent killing of host cells by the parasite Entamoeba histolytica. Cell Microbiol 2000; 2: 617-625. https://doi.org/10.1046/j.1462-5822.2000.00085.x
  8. Kim KA, Lee YA, Shin MH. Calpain-dependent calpastatin cleavage regulates caspase-3 activation during apoptosis of Jurkat T cells induced by Entamoeba histolytica. Int J Parasitol 2007; 37: 1209-1219. https://doi.org/10.1016/j.ijpara.2007.03.011
  9. Sim S, Yong TS, Park SJ, Im K, Kong Y, Ryu JS, Min DY, Shin MH. NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica. J Immunol 2005; 174: 4279-4288. https://doi.org/10.4049/jimmunol.174.7.4279
  10. Kim KA, Kim JY, Lee YA, Song KJ, Min D, Shin MH. NOX1 participates in ROS-dependent cell death of colon epithelial Caco2 cells induced by Entamoeba histolytica. Microbes Infect 2011; 13: 1052-1061. https://doi.org/10.1016/j.micinf.2011.06.001
  11. Kim KA, Kim JY, Lee YA, Min A, Bahk YY, Shin MH. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS. Korean J Parasitol 2013; 51: 61-68. https://doi.org/10.3347/kjp.2013.51.1.61
  12. Teixeira JE, Mann BJ. Entamoeba histolytica-induced dephosphorylation in host cells. Infect Immun 2002; 70: 1816-1823. https://doi.org/10.1128/IAI.70.4.1816-1823.2002
  13. Kim KA, Lee YA, Shin MH. Calpain-dependent cleavage of SHP-1 and SHP-2 is involved in the dephosphorylation of Jurkat T cells induced by Entamoeba histolytica. Parasite Immunol 2010; 32: 176-183. https://doi.org/10.1111/j.1365-3024.2009.01175.x
  14. Lee YA, Kim KA, Shin MH. Calpain mediates degradation of cytoskeletal proteins during Jurkat T-cell death induced by Entamoeba histolytica. Parasite Immunol 2011; 33: 349-356. https://doi.org/10.1111/j.1365-3024.2011.01290.x
  15. Jang YS, Song KJ, Kim JY, Lee YA, Kim KA, Lee SK, Shin MH. Calpains are involved in Entamoeba histolytica-induced death of HT-29 colonic epithelial cells. Korean J Parasitol 2011; 49: 177-180. https://doi.org/10.3347/kjp.2011.49.2.177
  16. Saido TC, Sorimachi H, Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J 1994; 8: 814-822.
  17. Perrin BJ, Huttenlocher A. Calpain. Int J Biochem Cell Biol 2002; 34: 722-725. https://doi.org/10.1016/S1357-2725(02)00009-2
  18. Carafoli E, Molinari M. Calpain: a protease in search of a function? Biochem Biophys Res Commun 1998; 247: 193-203. https://doi.org/10.1006/bbrc.1998.8378
  19. Suzuki K, Sorimachi H. A novel aspect of calpain activation. FEBS Lett 1998; 433: 1-4. https://doi.org/10.1016/S0014-5793(98)00856-4
  20. Squier MK, Sehnert AJ, Sellins KS, Malkinson AM, Takano E, Cohen JJ. Calpain and calpastatin regulate neutrophil apoptosis. J Cell Physiol 1999; 178: 311-319. https://doi.org/10.1002/(SICI)1097-4652(199903)178:3<311::AID-JCP5>3.0.CO;2-T
  21. Squier MK, Miller AC, Malkinson AM, Cohen JJ. Calpain activation in apoptosis. J Cell Physiol 1994; 159: 229-237. https://doi.org/10.1002/jcp.1041590206
  22. Witkowski JM, Zmuda-Trzebiatowska E, Swiercz JM, Cichorek M, Ciepluch H, Lewandowski K, Bryl E, Hellmann A. Modulation of the activity of calcium-activated neutral proteases (calpains) in chronic lymphocytic leukemia (B-CLL) cells. Blood 2002; 100: 1802-1809. https://doi.org/10.1182/blood-2001-11-0073
  23. Chen LF, Greene WC. Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 2004; 5: 392-401. https://doi.org/10.1038/nrm1368
  24. Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D'Alessandro N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-${\kappa}$B activation levels and in IAP gene expression. Cancer Lett 2005; 224: 53-65. https://doi.org/10.1016/j.canlet.2004.10.051
  25. Benekli M, Baer MR, Baumann H, Wetzier M. Signal transducer and activator of transcription proteins in leukemias. Blood 2003; 101: 2940-2954. https://doi.org/10.1182/blood-2002-04-1204
  26. Tadlaoui Hbibi A, Laguillier C, Souissi I, Lesage D, Le Coquil S, Cao A, Metelev V, Baran-Marszak F, Fagard R. Efficient killing of SW480 colon carcinoma cells by a signal transducer and activator of transcription (STAT) 3 hairpin decoy oligodeoxynucleotide-interference with interferon-gamma-STAT1-mediated killing. FEBS J 2009; 276: 2505-2515. https://doi.org/10.1111/j.1742-4658.2009.06975.x
  27. Oda A, Wakao H, Fujita H. Calpain is a signal transducer and activator of transcription (STAT) 3 and STAT5 protease. Blood 2002; 99: 1850-1852. https://doi.org/10.1182/blood.V99.5.1850
  28. Reijonen S, Kukkonen JP, Hyrskyluoto A, Kivinen J, Kairisalo M, Takei N, Lindholm D, Korhonen L. Downregulation of NF-kappaB signaling by mutant huntingtin proteins induces oxidative stress and cell death. Cell Mol Life Sci 2010; 67: 1929-1941. https://doi.org/10.1007/s00018-010-0305-y
  29. Kawasaki H, Kawashima S. Regulation of the calpain-calpastatin system by membranes (review). Mol Membr Biol 1996; 13: 217-224. https://doi.org/10.3109/09687689609160599
  30. Porn-Ares MI, Samali A, Orrenius S. Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 1998; 5: 1028-1033. https://doi.org/10.1038/sj.cdd.4400424
  31. Huang Y, Wang KKW. The calpain family and human disease. Trends Mol Med 2001; 7: 355-362. https://doi.org/10.1016/S1471-4914(01)02049-4
  32. Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains. Biochem J 1997; 328: 721-732.
  33. Croall DE, DeMartino GN. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev 1991; 71: 813-847.
  34. Goll DE, Thompson VF, Taylor RG, Zalewska T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays 1992; 14: 549-556. https://doi.org/10.1002/bies.950140810
  35. Wang KK, Villalobo A, Roufogalis BD. Activation of the Ca2+-ATPase of human erythrocyte membrane by an endogenous Ca2+-dependent neutral protease. Arch Biochem Biophys 1988; 260: 696-704. https://doi.org/10.1016/0003-9861(88)90498-5
  36. Kubbutat MH, Vousden KH. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol Cell Biol 1997; 17: 460-468.
  37. Waterhouse NJ, Finucane DM, Green DR, Elce JS, Kumar S, Alnemri ES, Litwack G, Khanna K, Lavin MF, Watters DJ. Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ 1998; 5: 1051-1061. https://doi.org/10.1038/sj.cdd.4400425
  38. Gao G, Dou QP. N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem 2000; 80: 53-72.
  39. Beg AA, Baltimore D. An essential role for NF-${\kappa}$B in preventing TNF-${\alpha}$-induced cell death. Science 1996; 274: 782-784. https://doi.org/10.1126/science.274.5288.782
  40. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680-1683. https://doi.org/10.1126/science.281.5383.1680
  41. Albee L, Perlman H. E. coli infection induces caspase dependent degradation of NF-kB and reduces the inflammatory response in macrophages. Inflamm Res 2006; 55: 2-9. https://doi.org/10.1007/s00011-005-0001-9
  42. Neuzil J, Schroder A, von Hundelshausen P, Zernecke A, Weber T, Gellert N, Weber C. Inhibition of inflammatory endothelial responses by a pathway involving caspase activation and p65 cleavage. Biochemistry 2001; 40: 4686-4692. https://doi.org/10.1021/bi002498n
  43. Thornton MV, Kudo D, Rayman P, Horton C, Molto L, Cathcart MK, Ng C, Paszkiewicz-Kozik E, Bukowski R, Derweesh I, Tannenbaum CS, Finke JH. Degradation of NF-kappa B in T cells by gangliosides expressed on renal cell carcinomas. J Immunol 2004; 172: 3480-3490. https://doi.org/10.4049/jimmunol.172.6.3480
  44. Kanda N, Seno H, Konda Y, Marusawa H, Kanai M, Nakajima T, Kawashima T, Nanakin A, Sawabu T, Uenoyama Y, Sekikawa A, Kawada M, Suzuki K, Kayahara T, Fukui H, Sawada M, Chiba T. STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene 2004; 23: 4921-4929. https://doi.org/10.1038/sj.onc.1207606
  45. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr. STAT3 as an oncogene. Cell 1999; 98: 295-303. https://doi.org/10.1016/S0092-8674(00)81959-5
  46. Epling-Burnette PK, Zhong B, Bai F, Jiang K, Bailey RD, Garcia R, Jove R, Djeu JY, Loughran TP Jr, Wei S. Cooperative regulation of Mcl-1 by Janus kinase/stat and phosphatidylinositol 3-kinase contribute to granulocyte-macrophage colony-stimulating factor-delayed apoptosis in human neutrophils. J Immunol 2001; 166: 7486-7495. https://doi.org/10.4049/jimmunol.166.12.7486
  47. Adachi Y, Aoki C, Yoshio-Hoshino N, Takayama K, Curiel DT, Nishimoto N. Interleukin-6 induces both cell growth and VEGF production in malignant mesotheliomas. Int J Cancer 2006; 119: 1303-1311. https://doi.org/10.1002/ijc.22006
  48. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004; 10: 48-54. https://doi.org/10.1038/nm976
  49. Hendry L, John S. Regulation of STAT signaling by proteolytic processing. Eur J Biochem 2004; 271: 4613-4620. https://doi.org/10.1111/j.1432-1033.2004.04424.x
  50. Datta R, Naura AS, Zerfaoui M, Errami Y, Oumouna M, Kim H, Ju J, Ronchi VP, Haas AL, Boulares AH. PARP-1 deficiency blocks IL-5 expression through calpain-dependent degradation of STAT-6 in a murine asthma model. Allergy 2011; 66: 853-861. https://doi.org/10.1111/j.1398-9995.2011.02549.x
  51. Glading A, Lauffenburger DA, Wells A. Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol 2002; 12: 46-54. https://doi.org/10.1016/S0962-8924(01)02179-1
  52. Constant S, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K. Extent of T cell receptor ligation can determine the functional differentiation of naive $CD4^+$ T cells. J Exp Med 1995; 182: 1591-1596. https://doi.org/10.1084/jem.182.5.1591
  53. Kagami S, Nakajima H, Kumano K, Suzuki K, Suto A, Imada K, Davey HW, Saito Y, Takatsu K, Leonard WJ, Iwamoto I. Both Stat5a and Stat5b are required for antigen-induced eosinophil and T cell recruitment into the tissue. Blood 2000; 95: 1370-1377.
  54. Kagami S, Nakajima H, Suto A, Hirose K, Suzuki K, Morita S, Kato I, Saito Y, Kitamura T, Iwamoto I. Stat5a regulates T helper cell differentiation by several distinct mechanisms. Blood 2001; 97: 2358-2365. https://doi.org/10.1182/blood.V97.8.2358

Cited by

  1. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses vol.7, pp.None, 2014, https://doi.org/10.3389/fmicb.2016.00256
  2. Entamoeba histolytica Up-Regulates MicroRNA-643 to Promote Apoptosis by Targeting XIAP in Human Epithelial Colon Cells vol.8, pp.None, 2014, https://doi.org/10.3389/fcimb.2018.00437
  3. Gene Profile Expression Related to Type I Interferons in HT-29 Cells Exposed to Cryptosporidium parvum vol.11, pp.7, 2018, https://doi.org/10.5812/jjm.63071
  4. Entamoeba histolytica activation of caspase-1 degrades cullin that attenuates NF-κB dependent signaling from macrophages vol.17, pp.9, 2021, https://doi.org/10.1371/journal.ppat.1009936