DOI QR코드

DOI QR Code

통계적 얼굴 모델을 이용한 부분적으로 가려진 얼굴 검출

Detection of Faces with Partial Occlusions using Statistical Face Model

  • 서정인 (경북대학교 IT대학 컴퓨터학부) ;
  • 박혜영 (경북대학교 IT대학 컴퓨터학부)
  • 투고 : 2014.07.21
  • 심사 : 2014.09.12
  • 발행 : 2014.11.15

초록

얼굴 검출은 입력 영상에서 얼굴 영역을 추출하는 과정으로, 얼굴 인식 및 인증 과정의 속도와 정확도를 효율적으로 높여주는 작업이며 그 응용분야도 다양하다. 기존에 개발된 얼굴 검출 방법들은 얼굴의 전체 형태를 바탕으로 검출을 수행하기 때문에 착용물 또는 신체 부위로 인해 일부가 가려져 폐색된 얼굴에 대해서는 그 검출 성능이 크게 하락할 수 있다. 이러한 문제를 해결하기 위하여 이 논문에서는 얼굴 영상을 지역적 특징 기술자의 집합으로 표현하고, 이에 대한 통계적 확률 모델을 추정한 뒤 이를 이용하여 입력 영상에서 얼굴 영역을 추출하는 방법을 제안한다. AR 데이터베이스와 Caltech 데이터베이스를 이용한 실험을 통해 제안하는 얼굴 검출 방법이 일부가 폐색된 얼굴 검출에 효과적임을 확인하였다.

Face detection refers to the process extracting facial regions in an input image, which can improve speed and accuracy of recognition or authorization system, and has diverse applicability. Since conventional works have tried to detect faces based on the whole shape of faces, its detection performance can be degraded by occlusion made with accessories or parts of body. In this paper we propose a method combining local feature descriptors and probability modeling in order to detect partially occluded face effectively. In training stage, we represent an image as a set of local feature descriptors and estimate a statistical model for normal faces. When the test image is given, we find a region that is most similar to face using our face model constructed in training stage. According to experimental results with benchmark data set, we confirmed the effect of proposed method on detecting partially occluded face.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. C. Zhang and Z. Zhang, "A Survey of Recent Advances in Face Detection," Microsoft Research Technical Report, 2010.
  2. E. Hjelmas and B. K. Low, "Face Detection: A Survey," Computer Vision and Image Understanding, Vol. 83, No. 3, pp. 236-274, 2001. https://doi.org/10.1006/cviu.2001.0921
  3. R. L. Hsu, M. Abdel-Mottaleb, and A.K. Jain, "Face detection in color images," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, pp. 696-706, 2002. https://doi.org/10.1109/34.1000242
  4. C. Liu, "A Bayesian Discriminating Features Method for Face Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 6, pp. 725-740, 2003. https://doi.org/10.1109/TPAMI.2003.1201822
  5. J. Seo and H. Park, "A robust face recognition though statistical learning of local features," Lecture Notes in Computer Science, Vol. 7063, pp. 335-341, 2011.
  6. J. Seo and H. Park, "Robust recognition of face with partial variations using local features and statistical learning," Neurocomputing, Vol. 129, pp. 41-48, 2014. https://doi.org/10.1016/j.neucom.2012.09.048
  7. N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," Computer Vision and Pattern Recognition, pp. 886-893, 2005.
  8. A. M. Martinez and R. Benavente, The AR Face Database, CVC Technical Report #24, 1998.
  9. P. Viola and M. Jones, "Robust real-time face detection," Proc. of International Journal of Computer Vision, Vol. 57, No. 2, pp. 137-154, 2004. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
  10. A. Vedaldi and B. Fulkerson. (2008). "VLFeat: An Open and Portable Library of Computer Vision Algorithms," [Online]. Available : http://www.vlfeat.org/ (downloaded 2014, Jan. 29)
  11. P. F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan, "Object Detection with Discriminatively Trained Part-Based Models," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 9, pp. 1627-1645, 2010. https://doi.org/10.1109/TPAMI.2009.167
  12. M. Weber. (1999). Faces 1999 (Front) database. [Online]. Available : http://www.vision.caltech.edu/archive.html (downloaded 2013, Nov. 12)