DOI QR코드

DOI QR Code

Exploiting Quality Scalability in Scalable Video Coding (SVC) for Effective Power Management in Video Playback

계층적 비디오 코딩의 품질확장성을 활용한 전력 관리 기법

  • 정현미 (인하대학교 컴퓨터정보공학과) ;
  • 송민석 (인하대학교 컴퓨터정보공학과)
  • Received : 2014.09.11
  • Accepted : 2014.09.26
  • Published : 2014.11.15

Abstract

Decoding processes in portable media players have a high computational cost, resulting in high power consumption by the CPU. If decoding computations are reduced, the power consumed by the CPU is also be reduced, but such a choice generally results in a degradation of the video quality for the users, so it is essential to address this tradeoff. We proposed a new CPU power management scheme that can make use of the scalability property available in the H.164/SVC standard. We first proposed a new video quality model that makes use of a video quality metric(VQM) in order to efficiently take into account the different quantization factors in the SVC. We then propose a new dynamic voltage scaling(DVS) scheme that can selectively combine the previous decoding times and frame sizes in order to accurately predict the next decoding time. We then implemented a scheme on a commercial smartphone and performed a user test in order to examine how users react to the VQM difference. Real measurements show that the proposed scheme uses up to 34% fewer energy than the Linux DVFS governor, and user tests confirm that the degradation in the quality is quite tolerable.

미디어 플레이어에서의 디코딩 과정은 많은 연산을 필요로 하며, CPU로부터 높은 소비전력을 초래한다. 디코딩 연산을 줄이는 것은 CPU 소비 전력을 감소시킬 수 있지만 사용자로부터 비디오 품질을 저하시키게 된다. 본 논문에서는 H.264의 품질 확장성을 이용하여 새로운 CPU 전력 관리 기법을 제안한다. 첫째, VQM(Video Quality Metric)을 사용하여 계층적 비디오 코딩의 서로 다른 양자화 인자를 고려한 새로운 비디오 품질 모델을 제안한다. 그리고 이전 디코딩 시간과 프레임 크기를 선택적으로 융합한 디코딩 시간 예측기법에 기반한 새로운 동적 전압 기법을 제안한다. 최신 스마트폰에서 구현하였고, 사용자 테스트를 수행하였다. 제안한 기법을 실제 측정에 적용하였을 때 리눅스 동적 전압 및 주파수 조절(DVFS) 거버너에 비해 34%의 에너지 감소를 보였고 사용자 테스트를 통해 실험 영상의 품질 하락을 사용자는 인지하지 못하거나 용인될 수 있음을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. R. Urunuela, G. Muller, and J. L. Lawall, "Energy adaptation for multimedia information kiosks," Proc. ACM & IEEE conf. Embedded Software, pp. 223-232, 2006.
  2. K. Choi, W. Cheng, and M. Pedram, "Frame-based dynamic voltage and frequency scaling for an MPEG player," Proc. IEEE/ACM International Conference on Computer Aided Design, pp. 732-737, 2002.
  3. A. Sinha, A. Chandrakasan, "Dynamic voltage scheduling using adaptive filtering of workload traces," Proc. IEEE International Conference on VISI Design, pp. 221-226, 2001.
  4. X. Liu, P. Shenoy, and M. Corner, "Chameleon: application-level power management," IEEE Trans. Mobile Computing, Vol. 7, No. 8, pp. 995-1010, Aug. 2008. https://doi.org/10.1109/TMC.2007.70767
  5. H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the scalable video coding extension of the H.264/AVC standard," IEEE Trans. Circuits syst. Video Technol., Vol. 17, No. 9, pp. 1103-1120, Sep. 2007. https://doi.org/10.1109/TCSVT.2007.905532
  6. M. Blestel, M. Raulet "Open SVC decoder: a flexible SVC library," Proc, of ACM Multimedia, pp. 1463-1466, 2010.
  7. ITU-T, "Recommendation J.149: Method for Specifying Accuracy and Cross-Calibration of Video Quality Metrics (VQM)," Mar. 2004.
  8. E. Kim, M. Song, "Decoding Time Estimation Techniques Using Linear Regression Model in H.264/ SVC Video Playback," Proc. of the KIISE Korea computer Congress 2013, pp. 1291-1293, 2013. (in Korean)
  9. ITU-R, "Recommendation ITU-R BT 500-7: Methodology for the subjective assessment of the quality of television pictures," 1995.
  10. H. Yun, P.-L. Wu, A. Arya, T. Abdelzaher, C. Kim, and L. Sha, "System-wide energy optimization for multiple DVS components and real-time tasks," Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS), pp. 133-142, 2010.