DOI QR코드

DOI QR Code

Muscular Condition Monitoring System Using Fiber Bragg Grating Sensors

광섬유 브래그 격자 센서를 이용한 근육 상태 감시 시스템

  • 김헌영 (서울과학기술대학원 기계공학과) ;
  • 이진혁 (서울과 학기술대학교 에너지환경대학원) ;
  • 김대현 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2014.09.05
  • Accepted : 2014.10.17
  • Published : 2014.10.30

Abstract

Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the musle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

광섬유센서는 전자파 무간섭, 부식 방지, 다중화 등의 장점들을 갖고 있어 다양한 상태 감시 시스템을 위한 연구에 많이 활용되고 있다. 본 논문에서는 광섬유센서 기반의 인체 근육 상태 감시 시스템을 제안한다. 상용화되어 있는 인체 상태 감시 센서는 전자기 기반의 센서가 대부분이다. 이는 전자기 간섭 및 왜곡의 우려가 있어, 이를 보완하고 장치의 간소화 및 사용자 편의성을 위해 광섬유 브래그 격자센서를 사용하였다. 근육 상태의 지표가 되는 근육 수축 및 이완을 측정하기 위해 원주방향으로의 운동 감시가 가능한 밴드형태의 광섬유 브래그 격자센서 모듈을 제작하였다. 그리고 광섬유 브래그 격자센서 모듈의 적용성 평가를 위해 단축 인장시험을 수행하였다. 실험 결과 인장 크기에 따른 브래그 파장 변화가 상호 연관성을 보였으며, 이를 통해 브래그 격자센서 기반의 근육 상태 감시 시스템 개발의 가능성을 확인하였다.

Keywords

References

  1. V. Giurgiutiu, A. Zagrai and J. J. Bao, "Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring," Structural Health Monitoring, Vol. 1, No. 1, pp. 41-61 (2002) https://doi.org/10.1177/147592170200100104
  2. W. Chung and D. Kang, "Full-scale test of a concrete box girder using FBG sensing system," Engineering Structures, Vol. 30, No. 3, pp. 643-652 (2008) https://doi.org/10.1016/j.engstruct.2007.05.003
  3. D. Kang and W. Chung, "Integrated monitoring scheme for a maglev guideway using multiplexed FBG sensor arrays," NDT&E International, Vol. 42, No. 4, pp. 260-266 (2009) https://doi.org/10.1016/j.ndteint.2008.11.001
  4. J. B. Ihn and F. K. Chang, "Pitch-catch active sensing methods in structural health monitoring for aircraft structures," Structural Health Monitoring, Vol. 7, No. 1, pp. 5-19 (2008) https://doi.org/10.1177/1475921707081979
  5. B. Yoo, A. S. Purekar, Y. Zhang and D. J. Pines, "Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels," Smart Materials and Structures, Vol. 19, No. 7 (2010)
  6. S. Kavithaa, R. J. Daniela and K. Sumangalab, "A simple analytical design approach based on computer aided analysis of bulk micromachined piezoresistive MEMS accelerometer for concrete SHM applications," Measurement, Vol. 46, No. 9, pp. 3372-3388 (2013) https://doi.org/10.1016/j.measurement.2013.05.013
  7. V. Mishra, N. Singh, U. Tiwari and P. Kapur, "Fiber grating sensors in medicine: Current and emerging applications," Sensors and Actuators A: Physical, Vol. 167, No. 2, pp. 279-290 (2011) https://doi.org/10.1016/j.sna.2011.02.045
  8. D. H. Kim and M. Q. Feng, "Real-time structural health monitoring using a novel fiber-optic accelerometer system," IEEE Sensors Journal, Vol. 7, No 4, pp. 536-543 (2007) https://doi.org/10.1109/JSEN.2007.891988
  9. R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros and B. Benmokrane, "Structural health monitoring of innovative bridges in Canada with fiber optic sensors," Smart Materials and Structures, Vol. 10, No. 3, pp. 560-573 (2001) https://doi.org/10.1088/0964-1726/10/3/320
  10. Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, "In-fiber Bragg-grating temperature sensor system for medical applications," Journal of Lightwave Technology, Vol. 15, No. 5, pp. 779-785 (1997) https://doi.org/10.1109/50.580812
  11. A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, "Optical fiber sensors embedded into medical textiles for healthcare monitoring," IEEE Sensors Journal, Vol. 8, No. 7, pp. 1215-1222 (2008) https://doi.org/10.1109/JSEN.2008.926518
  12. T. H. T. Chan, L. Yu, H. Y. Tamb, Y. Q. Ni, S. Y. Liu, W. H. Chung and L. K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation," Engineering Sructures, Vol. 28, No. 5, pp. 648-659 (2006) https://doi.org/10.1016/j.engstruct.2005.09.018
  13. K. H. Lee and D. H. Kim. "Shape monitoring of composite cantilever beam by using fiber Bragg grating sensors," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 7, pp. 833-839 (2013) https://doi.org/10.3795/KSME-A.2013.37.7.833
  14. H. Y. Kim, D. Kang, J. H. Lee and D. H. Kim, "Characteristics of thermal coefficient of fiber Bragg grating for temperature measurement," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 8, pp. 999-1005 (2013)
  15. P. Moyoa, J. M. W. Brownjohnb, R. Sureshc and S. C. Tjinc, "Development of fiber Bragg grating sensors for monitoring civil infrastructure," Engineering Structures, Vol. 27, No. 12, pp. 1828-1834 (2005) https://doi.org/10.1016/j.engstruct.2005.04.023
  16. A. Fender, E. J. Rigg, R. R. J. Maier, W. N. MacPherson, J. S. Barton, A. J. Moore, J. D. C. Jones, D. Zhao, L. Zhang, I. Bennion, S. McCulloch and B. J. S. Jones, "Dynamic twoaxis curvature measurement using multicore fiber Bragg gratings interrogated by arrayed waveguide gratings," Applied Optics, Vol. 45, No. 36, pp. 9041-9048 (2006) https://doi.org/10.1364/AO.45.009041
  17. E. Udd, "Fiber Optic Smart Structures," John Wiley and Sons, New York, pp. 271-285 (1995)

Cited by

  1. Shape-Estimation of Human Hand Using Polymer Flex Sensor and Study of Its Application to Control Robot Arm vol.35, pp.1, 2015, https://doi.org/10.7779/JKSNT.2015.35.1.68