References
- Baley, J. and J. Li. 2012. Micrornas and ovarian function. J. Ovarian Res. 5:8. https://doi.org/10.1186/1757-2215-5-8
- Bernal, A. B., M. H. Vickers, M. B. Hampton, R. A. Poynton, and D. M. Sloboda. 2010. Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring. Plos One. 5(12):e15558. https://doi.org/10.1371/journal.pone.0015558
- Camp, T. A., J. O. Rahal, and K. E. Mayo. 1991. Cellular localization and hormonal regulation of follicle-stimulating hormone and luteinizing hormone receptor messenger rnas in the rat ovary. Mol. Endocrinol. 5:1405-1417. https://doi.org/10.1210/mend-5-10-1405
- Chen, Y., W. N. Jefferson, R. R. Newbold, E. Padilla-Banks, and M. E. Pepling. 2007. Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology 148:3580-3590. https://doi.org/10.1210/en.2007-0088
- da Silva Faria, T., C. da Fonte Ramos, and F. J. B. Sampaio. 2004. Puberty onset in the female offspring of rats submitted to protein or energy restricted diet during lactation. J. Nutr. Biochem. 15:123-127. https://doi.org/10.1016/j.jnutbio.2003.08.011
- da Silva Faria, T., F. de Bittencourt Brasil, F. J. Sampaio, and C. da Fonte Ramos. 2008. Maternal malnutrition during lactation alters the folliculogenesis and gonadotropins and estrogen isoforms ovarian receptors in the offspring at puberty. J. Endocrinol. 198:625-634. https://doi.org/10.1677/JOE-08-0121
- Ding W., W. Wang, B. Zhou, W. Zhang, P. Huang, F. Shi, and K. Taya. 2010. Formation of primordial follicles and immunolocalization of PTEN, PKB and FOXO3a proteins in the ovaries of fetal and neonatal pigs. J. Reprod. Dev. 56:162-168. https://doi.org/10.1262/jrd.09-094H
- Durlej, M., K. Knapczyk-Stwora, M. Duda, J. Galas, and M. Slomczynska. 2011. The expression of FSH receptor (FSHR) in the neonatal porcine ovary and its regulation by flutamide. Reprod. Domest. Anim. 46:377-384. https://doi.org/10.1111/j.1439-0531.2010.01673.x
- Faria, T. S., F. B. Brasil, F. J. B. Sampaio, and C. F. Ramos. 2010. Effects of maternal undernutrition during lactation on estrogen and androgen receptor expressions in rat ovary at puberty. Nutrition 26:993-999. https://doi.org/10.1016/j.nut.2009.09.027
- Fiedler, S. D., M. Z. Carletti, X. Hong, and L. K. Christenson. 2008. Hormonal regulation of microrna expression in periovulatory mouse mural granulosa cells. Biol. Reprod. 79:1030-1037. https://doi.org/10.1095/biolreprod.108.069690
- Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. 1998. Potent and specific genetic interference by double-stranded rna in caenorhabditis elegans. Nature 391(6669):806-811. https://doi.org/10.1038/35888
- Fortune, J., R. Cushman, C. Wahl, and S. Kito. 2000. The primordial to primary follicle transition. Mol. Cell. Endocrinol. 163:53-60. https://doi.org/10.1016/S0303-7207(99)00240-3
- Godfrey, K. M., P. D. Gluckman, and M. A. Hanson. 2010. Developmental origins of metabolic disease: Life course and intergenerational perspectives. Trends Endocrin. Metab. 21:199-205. https://doi.org/10.1016/j.tem.2009.12.008
-
Grzesiak, M., K. Knapczyk-Stwora, M. Duda, and M. Slomczynska. 2012. Elevated level of
$17{\beta}$ -estradiol is associated with overexpression of FSHR, CYP19A1, and CTNNB1 genes in porcine ovarian follicles after prenatal and neonatal flutamide exposure. Theriogenology 78:2050-2060. https://doi.org/10.1016/j.theriogenology.2012.07.026 - Ibanez, L., N. Potau, A. Ferrer, F. Rodriguez-Hierro, M. V. Marcos, and F. de Zegher. 2002. Reduced ovulation rate in adolescent girls born small for gestational age. J. Clin. Endocrinol. Metab. 87:3391-3393. https://doi.org/10.1210/jcem.87.7.8657
- Iwasa, T., T. Matsuzaki, M. Murakami, R. Kinouchi, G. Gereltsetseg, S. Yamamoto, A. Kuwahara, T. Yasui, and M. Irahara. 2011. Delayed puberty in prenatally glucocorticoid administered female rats occurs independently of the hypothalamic Kiss1-Kiss1R-GnRH system. Int. J. Dev. Neurosci. 29:183-188. https://doi.org/10.1016/j.ijdevneu.2010.11.001
- Jia Y., R. Cong, R. Li, X. Yang, Q. Sun, N. Parvizi, and R. Zhao. 2012. Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver. J. Nutr. 142:1659-1665. https://doi.org/10.3945/jn.112.160341
- Kertesz, M., N. Iovino, U. Unnerstall, U. Gaul, and E. Segal. 2007. The role of site accessibility in microrna target recognition. Nat. Genet. 39:1278-1284. https://doi.org/10.1038/ng2135
- Kezele, P. and M. K. Skinner. 2003. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: Endocrine model of follicle assembly. Endocrinology 144:3329-3337. https://doi.org/10.1210/en.2002-0131
- Liu X., J. Wang, R. Li, X. Yang, Q. Sun, E. Albrecht, and R. Zhao. 2011. Maternal dietary protein affects transcriptional regulation of myostatin gene distinctively at weaning and finishing stages in skeletal muscle of Meishan pigs. Epigenetics 6:899-907. https://doi.org/10.4161/epi.6.7.16005
- Meikle, D. and M. Westberg. 2001. Maternal nutrition and reproduction of daughters in wild house mice (Mus musculus). Reproduction 122:437-442. https://doi.org/10.1530/rep.0.1220437
- Nilsson, E. E. and M. K. Skinner. 2003. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol. Reprod. 69:1265-1272. https://doi.org/10.1095/biolreprod.103.018671
- Rae, M. T., C. E. Kyle, D. W. Miller, A. J. Hammond, A. N. Brooks, and S. M. Rhind. 2002. The effects of undernutrition, in utero, on reproductive function in adult male and female sheep. Anim. Reprod. Sci. 72:63-71. https://doi.org/10.1016/S0378-4320(02)00068-4
- Rucker, E. B., P. Dierisseau, K. U. Wagner, L. Garrett, A. Wynshaw-Boris, J. A. Flaws, and L. Hennighausen. 2000. Bcl-x and bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol. Endocrinol. 14:1038-1052. https://doi.org/10.1210/mend.14.7.0465
- Sirotkin, A. V., D. Ovcharenko, R. Grossmann, M. Laukova, and M. Mlyncek. 2009. Identification of micrornas controlling human ovarian cell steroidogenesis via a genome-scale screen. J. Cell. Physiol. 219:415-420. https://doi.org/10.1002/jcp.21689
- Sloboda, D. M., M. Hickey, and R. Hart. 2011. Reproduction in females: The role of the early life environment. Hum. Reprod. Update. 17:210-227. https://doi.org/10.1093/humupd/dmq048
- Sloboda, D. M., G. J. Howie, A. Pleasants, P. D. Gluckman, and M. H. Vickers. 2009. Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. Plos One 4(8):e6744. https://doi.org/10.1371/journal.pone.0006744
- Sun, R., L. Lei, L. Cheng, Z. F. Jin, S. J. Zu, Z. Y. Shan, Z. D. Wang, J. X. Zhang, and Z. H. Liu. 2010. Expression of GDF-9, BMP-15 and their receptors in mammalian ovary follicles. J. Mol. Histol. 41:325-332. https://doi.org/10.1007/s10735-010-9294-2
- Sun, Y., Y. Lin, H. Li, J. Liu, X. Sheng and W. Zhang. 2012. 2, 5-hexanedione induces human ovarian granulosa cell apoptosis through bcl-2, bax, and caspase-3 signaling pathways. Arch. Toxicol. 86:205-215. https://doi.org/10.1007/s00204-011-0745-7
- Tanwar, P. S., T. O'Shea, and J. R. McFarlane, 2008. In vivo evidence of role of bone morphogenetic protein-4 in the mouse ovary. Anim. Reprod. Sci. 106:232-240. https://doi.org/10.1016/j.anireprosci.2007.04.015
- Tomanek, M. and E. Chronowska. 2006. Immunohistochemical localization of proliferating cell nuclear antigen (PCNA) in the pig ovary. Folia Histochem. Cytobiol. 44:269-274.
- Torley, K. J., J. C. da Silveira, P. Smith, R. V. Anthony, D. Veeramachaneni, Q. A. Winger, and G. J. Bouma. 2011. Expression of mirnas in ovine fetal gonads: Potential role in gonadal differentiation. Reprod. Biol. Endocrinol. 9:2. https://doi.org/10.1186/1477-7827-9-2
- Xu, B., J. Hua, Y. Zhang, X. Jiang, H. Zhang, T. Ma, W. Zheng, R. Sun, W. Shen, J. Sha, H. J. Cooke, and Q. Shi. 2011. Proliferating cell nuclear antigen (PCNA) regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. Plos One. 6(1):e16046. https://doi.org/10.1371/journal.pone.0016046
Cited by
- MicroRNAs in ovarian function and disorders vol.8, pp.1, 2015, https://doi.org/10.1186/s13048-015-0162-2
- MicroRNA Expression is Altered in Granulosa Cells of Ovarian Hyperresponders vol.23, pp.8, 2016, https://doi.org/10.1177/1933719115625849
- Breeding animals for quality products: not only genetics vol.28, pp.2, 2016, https://doi.org/10.1071/RD15353
- Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos pp.14647931, 2019, https://doi.org/10.1111/brv.12459
- 環境因子とマイクロRNA:DOHaD研究への応用と展望 vol.73, pp.2, 2018, https://doi.org/10.1265/jjh.73.105
- Intergenerational response of steroidogenesis-related genes to maternal malnutrition pp.2040-1752, 2019, https://doi.org/10.1017/S2040174419000060
- Testicular development in male lambs prenatally exposed to a high‐starch diet vol.85, pp.5, 2014, https://doi.org/10.1002/mrd.22974
- An integrated analysis of the circRNA-miRNA-mRNA network reveals novel insights into potential mechanisms of cell proliferation during liver regeneration vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2019.1669623
- Maternal protein restriction before and during pregnancy leads to a gestational day-dependent response of folliculogenesis in outbred mice vol.33, pp.10, 2014, https://doi.org/10.1071/rd21028
- Developmental programming of the female reproductive system-a review vol.104, pp.4, 2021, https://doi.org/10.1093/biolre/ioaa232
- Multifaceted epigenetic regulation of porcine testicular aromatase vol.541, pp.None, 2014, https://doi.org/10.1016/j.mce.2021.111526
- MiR-31 targets HSD17B14 and FSHR, and miR-20b targets HSD17B14 to affect apoptosis and steroid hormone metabolism of porcine ovarian granulosa cells vol.180, pp.None, 2022, https://doi.org/10.1016/j.theriogenology.2021.12.014