DOI QR코드

DOI QR Code

Study of the Diffusion of Phosphorus Dependent on Temperatures for Selective Emitter Doping Process of Atmospheric Pressure Plasma

대기압 플라즈마의 선택적 도핑 공정에서 온도에 의한 인(Phosphorus)의 확산연구

  • Kim, Sang Hun (Kwangwoon University of Department of Electrical and Biological Physics) ;
  • Yun, Myoung Soo (Kwangwoon University of Department of Electrical and Biological Physics) ;
  • Park, Jong In (Kwangwoon University of Department of Electrical and Biological Physics) ;
  • Koo, Je Huan (Kwangwoon University of Department of Electrical and Biological Physics) ;
  • Kim, In Tae (Kwangwoon University of Department of Chemistry) ;
  • Choi, Eun Ha (Kwangwoon University of Department of Electrical and Biological Physics) ;
  • Cho, Guangsup (Kwangwoon University of Department of Electrical and Biological Physics) ;
  • Kwon, Gi-Chung (Kwangwoon University of Department of Electrical and Biological Physics)
  • 김상훈 (광운대학교 전자바이오물리학과) ;
  • 윤명수 (광운대학교 전자바이오물리학과) ;
  • 박종인 (광운대학교 전자바이오물리학과) ;
  • 구제환 (광운대학교 전자바이오물리학과) ;
  • 김인태 (광운대학교 화학과) ;
  • 최은하 (광운대학교 전자바이오물리학과) ;
  • 조광섭 (광운대학교 전자바이오물리학과) ;
  • 권기청 (광운대학교 전자바이오물리학과)
  • Received : 2014.10.08
  • Accepted : 2014.10.23
  • Published : 2014.10.31

Abstract

In this study, we propose the application of doping process technology for atmospheric pressure plasma. The plasma treatment means the wafer is warmed via resistance heating from current paths. These paths are induced by the surface charge density in the presence of illuminating Argon atmospheric plasmas. Furthermore, it is investigated on the high-concentration doping to a selective partial region in P type solar cell wafer. It is identified that diffusion of impurities is related to the wafer temperature. For the fixed plasma treatment time, plasma currents were set with 40, 70, 120 mA. For the processing time, IR(Infra-Red) images are analyzed via a camera dependent on the temperature of the P type wafer. Phosphorus concentrations are also analyzed through SIMS profiles from doped wafer. According to the analysis for doping process, as applied plasma currents increase, so the doping depth becomes deeper. As the junction depth is deeper, so the surface resistance is to be lowered. In addition, the surface charge density has a tendency inversely proportional to the initial phosphorus concentration. Overall, when the plasma current increases, then it becomes higher temperatures in wafer. It is shown that the diffusion of the impurity is critically dependent on the temperature of wafers.

Keywords

References

  1. J. A. Duffie, Solar cell Engineering of thermal processes, WILLIAM A. BECKMAN, John Wiley & Sons. Inc, New Jersey (2013) 22.
  2. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, Gary S. Selwyn, Robert F. Hicks : IEEE Trans. PLASMA, 26 (1998) 1685. https://doi.org/10.1109/27.747887
  3. I. H. Choi, M. S. Yun, T. H. Jo, J. H. Roh, B. I. Jeon, I. T. Kim, E. H. Choi, G. S. Cho, G. C. Kwon, New & Renewable Energy, 9 (2013) 23. https://doi.org/10.7849/ksnre.2013.9.2.023
  4. G. S. Cho, H. G. Lim, J. H. Kim, D. J. Jin, G. C. Kwon, E. H. Choi, H. S. Uhm, IEEE Trans. PLASMA SCI, 39 (2011) 1234. https://doi.org/10.1109/TPS.2011.2124473
  5. Werner Kern, J. Electrochem. Soc, 137 (1990) 1887. https://doi.org/10.1149/1.2086825
  6. D. K. Schroder, Semiconductor Material And Device Characterization, John Wiley & Sons. Inc, New Jersey (2006) 8.
  7. Y. J. Hong, Y. H. Kim, Y. H. Jung, G. C. Kwon, J. J. Choi, G. S. Cho, H. S. Uhm, D. Kim, Y. G. Han, P. Suanpoot, E. H. Choi, ScienceJet, 57 (2014) 1.
  8. N. D. Lang, W. Kohn, Phys. Rev. B, 1 (1970) 4555. https://doi.org/10.1103/PhysRevB.1.4555
  9. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Surface and Coatings Technology, 122 (1999) 73. https://doi.org/10.1016/S0257-8972(99)00441-7