DOI QR코드

DOI QR Code

Enhancement of Au·Ag Leaching by Mechanochemical Activation and Thiourea-Thiocyanate Mixing Solution

기계적-화학적 활성화와 티오요소-티오시안산염 혼합용액에 의한 Au·Ag 용출 향상

  • You, Don-Sang (Department of Energy and Resource Engineering, Chosun University) ;
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
  • 유돈상 (조선대학교 에너지자원공학과) ;
  • 박천영 (조선대학교 에너지자원공학과)
  • Received : 2014.05.28
  • Accepted : 2014.07.31
  • Published : 2014.10.31

Abstract

In order to enhance the Au Ag leach rate, a mechanochemical activation process and a mixed thiourea-thiocyanate solution has been applied to Au concentrate. To achieve mechanochemical activation, the Au concentrate was mechanically ground using a dry and a wet process. The results of a particle size distribution analysis and an XRD analysis, average particle size and crystallite size were much smaller in the dry-sample than in the concentrate sample. As well the size was smaller in the wet-sample than in the dry-sample. In SEM and XRD analysis, the amorphization effect was observed in the wet-sample due to mechanochemical activation. Au Ag leaching experiments were carried out with a thiourea solution, a thiocyanate solution and a mixed thiourea-thiocyanate solution. The Au Ag leach rate was much greater in the dry-ground-sample than in the concentrate sample, and the leach rate was greater in the wet-ground-sample than in the dry-sample. The Au Ag leach rate was much greater in the thiocyanate solution than in the thiourea solution, and the leaching rate was much greater in the mixed thiourea-thiocyanate solution than in the thiocyanate solution. Up to a 99% leach rate for Au Ag were only achieved in the wet-sample using the mixed thiourea-thiocyanate leaching solution.

Au 정광으로부터 Au Ag의 용출율을 향상시키기 위하여 기계적-화학적 활성화와 티오요소-티오시안산염 혼합용액을 적용하였다. 기계적-화학적 활성화를 이루기 위하여 정광 시료를 건식으로 그리고 습식으로 미분쇄하였다. 입도분포 분석과 XRD 분석 결과, 평균 입도 크기와 결정크기는 정광 시료보다 건식-시료에서 그리고 건식-시료보다 습식-시료에서 더 작게 나타났다. SEM과 XRD 분석 결과 기계적-화학적 활성화에 의해서 습식-시료에서 비정질화 현상이 관찰되었다. Au Ag에 대한 용출실험을 티오요소 용액, 티오시안산염 용액 그리고 티오요소-티오시안산염 혼합 용액으로 각각 수행하였다. Au Ag 용출율은 정광 시료보다 건식-시료에서 그리고 건식-시료보다 습식-시료에서 더 높게 나타났다. Au Ag는 티오요소 용액에서 보다 티오시안산염 용액에서 그리고 티오시안산염 용액에서보다 티오요소-티오시안산염 혼합 용액에서 더 높게 용출되었다. 습식-시료와 티오요소-티오시안산염 혼합 용액을 적용할 때 Au Ag가 99% 이상으로 용출되었다.

Keywords

References

  1. Achimovicova, M. and Balaz, P., 2005, Influence of mechanical activation on selectivity of acid leaching of arsenopyrite. Hydrometallurgy, 77, 3-7. https://doi.org/10.1016/j.hydromet.2004.09.008
  2. Alex, T.C., Kumar, R., Roy, S.K., and Mehrotra, S.P., 2008, Stirred bead mill grinding of gibbsite: Surface and morphological changes. Advanced Powder Technology, 19, 483-491. https://doi.org/10.1016/S0921-8831(08)60914-0
  3. Balaz, P. and Achimovicova, M., 2006, Mechano-chemical leaching in hydrometallurgy of complex sulphides. Hydrometallurgy, 84, 60-68. https://doi.org/10.1016/j.hydromet.2006.04.006
  4. Balaz, P., Boldizarova, E., Achimovicova, M., and Kammel, R., 2000, Leaching and dissolution of a pentlandite concentrate pretreated by mechanical activation. Hydrometallurgy, 57, 85-96. https://doi.org/10.1016/S0304-386X(00)00102-X
  5. Balaz, P., Ficeriova, J., and Leon, C.V., 2003, Silver leaching from a mechanochemcially pretreated complex sufide concentrate. Hydrometallurgy, 70, 113-119. https://doi.org/10.1016/S0304-386X(03)00051-3
  6. Chatfield, T.E.C., Wruss, W., and Maly-Schreiber, M., 1985, The use of X-ray diffraction peak-broadening analysis to characterize ground $Al_2O_3$ powder. Journal of Materials Science, 20, 1266-1274. https://doi.org/10.1007/BF01026322
  7. Costa, C., 1997, Hydrometallurgy of gold: New perspectives and treatment of refractory sulfide ores. Fizykochemiczne Problemy Mineralurgii, 31, 63-72.
  8. Eymery, J.P. and Ylli, F., 2000, Study of a mechanochemical transformation in iron pyrite. Journal of Alloy and Compounds, 298, 306-309. https://doi.org/10.1016/S0925-8388(99)00659-3
  9. Ficeriova, J., Balaz, P., and Boldizarova, E., 2005, Combined mechanochemical and thiosulfate leaching of silver from a complex sulphide concentrate. International Journal of Mineral Processing, 76, 260-265. https://doi.org/10.1016/j.minpro.2005.01.005
  10. Godocikova, E., Balaz, P., and Boldizarova, E., 2002a, Structural and temperature sensitivity of the chloride leaching of copper, lead and zinc from a mechanically activated complex sulfide. Hydrometallurgy, 65, 83-93. https://doi.org/10.1016/S0304-386X(02)00094-4
  11. Godocikova, E., Balaz, P., Basstl, Z., and Brabec, L., 2002b, Spectroscopic study of the surface oxidation of mechanically activated sulphides. Applied Surface Science, 200, 36-47. https://doi.org/10.1016/S0169-4332(02)00609-8
  12. Hasab, M.G., Raygan, S., and Rashchi, F., 2013, Chloridehypochlorite leaching of gold from a mechanically activated refractory sulfide concentrate. Hydrometallurgy, 138, 59-64. https://doi.org/10.1016/j.hydromet.2013.06.013
  13. Hilson, G. and Monhemius, A.J., 2006, Alternative to cyanide in the gold mining industry: What prospects for the future? Journal of Cleaner Production, 14, 1158-1167. https://doi.org/10.1016/j.jclepro.2004.09.005
  14. Hu, H., Chen, Q., Yin, Z., Zhang, P., and Wang, G., 2004, Effect of grinding atmosphere on the leaching of mechanically activated pyrite and sphalerite. Hydrometallurgy, 72, 79-86. https://doi.org/10.1016/S0304-386X(03)00127-0
  15. Hu, H.P., Chen, Q.Y., Yin, Z.L., He, Y.H., and Huang, B.Y., 2007, Mechanism of mechanical activation for sulfide ores. Transactions of Nonferrous Metals Society of China, 17, 205-213. https://doi.org/10.1016/S1003-6326(07)60073-9
  16. Kholmogorov, A.G., Kononova, O.N., Pashkov, G.L., and Kononov, Y.S., 2002, Thiocyanate solutions in gold technology. Hydrometallurgy, 64, 43-48. https://doi.org/10.1016/S0304-386X(02)00005-1
  17. Lazaroff, N., Sigal, W., and Wasserman, A., 1982, Iron oxidation and precipitation of ferric hydroxysulfates by resting Thiobacillus ferrooxidans cells. Applied and Environmental Microbiology, 43, 924-938.
  18. Li, J., Safarzadeh, M.S., Moats, M.S., Miller, J.D., LeVier, K.M., Dietrich, M., and Wan, R.Y., 2012, Thiocyanate hydrometallurgy for the recovery of gold. Hydrometallurgy, 113, 1-9.
  19. Maurice, D. and Hawk, J.A., 1999, Ferric chloride leaching of a mechanically activated pentlandite-chalcopyrite concentrate. Hydrometallurgy, 52, 289-312. https://doi.org/10.1016/S0304-386X(99)00021-3
  20. Perez-Maqucda, L.A., Duran, A., and Perez-Rodeiguez, J.L., 2005, Preparation of submicron talc particles by sonication. Applied Clay Science, 28, 245-255. https://doi.org/10.1016/j.clay.2004.01.012
  21. Perez-Rodriguez, J.L. and Sanchez-Soto, P.J., 1991, The influence of the dry grinding on the thermal behaviour of pyrophyllite. Journal of Thermal Analysis, 37, 1401-1413. https://doi.org/10.1007/BF01913477
  22. Perez-Rodriguez, J.L., Wiewiora, A., Ramirez-Valle, V., Duran, A., and Perez-Maqueda, L.A., 2007, Preparation of nano-pyrophyllite: Comparative study of sonication and grinding. Journal of Physics and Chemistry of Solids, 68, 1225-1229. https://doi.org/10.1016/j.jpcs.2007.01.007
  23. Prasad, M.S., Mensah-Biney, R., and Pizarro, R.S., 1991, Modern trends in gold processing-overview. Minerals Engineering, 4, 1257-1277. https://doi.org/10.1016/0892-6875(91)90171-Q
  24. Ungar, T.U., 2004, Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 51, 777-781. https://doi.org/10.1016/j.scriptamat.2004.05.007
  25. Urbanski, T.S., Fornari, P., and Abbruzzese, C., 2000, Gold electrowinning from aqueous-alcoholic thiourea solutions. Hydrometallurgy, 55, 137-152. https://doi.org/10.1016/S0304-386X(99)00065-1
  26. Veglio, F., Trifoni, M., Pagnanelli, F., and Toro, L., 2001, Shrinking core model with variable activation energy: A kinetic model of manganiferous ore leaching with sulphuric acid and lactose. Hydrometallurgy, 60, 167-179. https://doi.org/10.1016/S0304-386X(00)00197-3
  27. Venkateswarlu, K., Bose, A.C., and Rameshbabu, N., 2010, X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Physica B: Condensed Matter, 405, 4256-4261. https://doi.org/10.1016/j.physb.2010.07.020
  28. Wei, X., Viadero, Jr.R.C., and Buzby, K.M., 2005, Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environmental Engineering Science, 22, 745-755. https://doi.org/10.1089/ees.2005.22.745
  29. Welham, N.J., 2001, Mechanochemical processing of goldbearing sulfides. Minerals Engineering, 14, 341-347. https://doi.org/10.1016/S0892-6875(01)00005-X
  30. Wiewiora, A., Sanchez-Soto, P.J., Aviles, M.A., Justo, A., and Perez-Rodriguez, J.L., 1993, Effect of dry grinding and leaching on polytypic structure of pyrophyllite. Applied Clay Science, 8, 261-282. https://doi.org/10.1016/0169-1317(93)90008-O
  31. Yang, X., Moats, M.S., and Miller, J.D., 2010a, Gold dissolution in acidic thiourea and thiocyanate solutions. Electrochemica Acta, 55, 3643-3649. https://doi.org/10.1016/j.electacta.2010.01.105
  32. Yang, X., Moats, M.S., and Miller, J.D., 2010b, The interaction of thiourea and formamidine disulfide in the dissolution of gold in sulfuric acid solutions. Minerals Engineering, 23, 698-704. https://doi.org/10.1016/j.mineng.2010.04.006
  33. Yang, X., Moats, M.S., Miller, J.D., Wang, X., Shi, X., and Xu, H., 2011, Thiourea-thiocyanate leaching system for gold. Hydrometallurgy, 106, 58-63. https://doi.org/10.1016/j.hydromet.2010.11.018
  34. Zhao, Z., Zhang, Y., Chen, X., Chen, A., and Huo, G., 2009, Effect of mechanical activation on the leaching kinetics of pyrrhotite. Hydrometallurgy, 99, 105-108. https://doi.org/10.1016/j.hydromet.2009.06.002