DOI QR코드

DOI QR Code

열, 염산 및 수산화나트륨 처리에 의한 Vectran® 섬유의 특성 변화

Characteristic Changes in Vectran® Fibers Treated with Heat, HCl, and NaOH

  • 백영미 (부산대학교 의류학과) ;
  • 안승국 (부산대학교 유기소재시스템공학과)
  • Baek, Young Mee (Department of Clothing and Textiles, Pusan National University) ;
  • An, Seung Kook (Department of Organic Material Science and Engineering, Pusan National University)
  • 투고 : 2014.08.12
  • 심사 : 2014.09.30
  • 발행 : 2014.10.31

초록

In this study, research was conducted on $Vectran^{(R)}$ fibers (highly heat resistant, high strength, lightweight industrial fibers) to determine their suitability for use in the development of hybrid wires and cables. Vectran fibers were heat-treated to various temperatures and treated with HCl and NaOH solutions under various conditions. The effects of heat, HCl, and NaOH treatment on the creep behaviors, mechanical properties, and surface properties of Vectran fibers were examined. X-ray diffraction (XRD) analysis was used to investigate crystallinity changes; while Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to analyze chemical structure changes resulting from degradation. Analysis showed that the mechanical properties and crystallinity of Vectran fibers changed significantly by treatment at temperatures greater than $250^{\circ}C$. Although HCl treatments did not cause significant changes, NaOH treatments resulted in considerable changes in the surface and mechanical properties and crystallinity. FT-IR and XPS analyses indicated that the degradation resulted from the hydrolysis of ester bonds in the fibers.

키워드

참고문헌

  1. http://www.yonhapnews.co.kr/economy/2013/10/24/0325000000AKR20131024048200003.HTML
  2. Y. G. Jeon and B. G. Min, "High Performance Polyarylate Fiber", Fiber Technol Ind, 2011, 15(1), 22-33.
  3. R. B. Fette and M. F. Sovinski, "Vectran Fiber Time-Dependent Behavior and Additional Static Loading Properties", NASA, Goddard Space Flight Center, Greenbelt, MD, 2004, pp.1-15.
  4. J. Blamont, “Planetary Balloons”, Exp Astron, 2008, 22, 1-39. https://doi.org/10.1007/s10686-008-9095-8
  5. D. A. Shockey, R. S. Piascik, B. J. Jensen, L. S. Hewes, and J. K. Sutter, “Textile Damage in Astronaut Gloves”, J Fail Anal Preven, 2013, 13, 748-756. https://doi.org/10.1007/s11668-013-9742-x
  6. W. C. Lee and A. T. DiBenedetto, “The Processing of Ternary LCP/LCP/Thermoplastic Blends”, Polymer, 1993, 34, 684-690. https://doi.org/10.1016/0032-3861(93)90348-E
  7. W. N. Kim and M. M. Denn, “Properties of Blends of a Thermotropic Liquid Crystalline Polymer with a Flexible Polymer (Vectra/PET)”, J Rheol, 1992, 36, 1477-1498. https://doi.org/10.1122/1.550269
  8. S. O. Lee, Ph.D. Thesis, Chungnam National University, Daejeon, Korea, 2013.
  9. J. D. Menczel, G. L. Collins, and S. K. Saw, "Thermal Analysis of $Vectran^{(R)}$ Fibers and Films", J Therm Anal Calorim, 1997, 49, 201-208. https://doi.org/10.1007/BF01987440
  10. C. K. Saw, G. Collins, J. Menczel, and M. Jaffe, “Thermally Induced Reorganization in LCP Fibers”, J Therm Anal Calorim, 2008, 93, 175-182. https://doi.org/10.1007/s10973-007-8867-0
  11. X. Xia, H. Wang, F. Huang, Y. Cai, and Q. Wei, “Surface Characterization of Aromatic Thermotropic Liquid Crystalline Fiber Deposited by Nanostructured Silver”, Fiber Polym, 2010, 11, 813-818. https://doi.org/10.1007/s12221-010-0813-2
  12. T. M. Araujo and A. Pegorettia, “Liquid Crystalline Single-Polymer Short-Fibers Composites”, Composite Interfaces, 2013, 20(4), 287-298. https://doi.org/10.1080/15685543.2013.796753
  13. Y. S. Chun, S. W. Cheen, H. C. Jung, W. N. Kim, and S. B. Kim, "Miscibility and Transesterification Reaction of Blends of Polyarylate and Thermotropic Liquid Crystalline, Polymer", The Korean J Rheol, 1998, 10(1), 50-56.
  14. J. Zeng and A. N. Netravali, "Effects of XeCl Excimer Laser Treatment of $Vectran^{(R)}$ Fibers and Their Adhesion to Epoxy Resin", J Adhesion Sci Technol, 2006, 20, 387-409. https://doi.org/10.1163/156856106777144309
  15. Y. Liu, Y. Liu, H. Tan, C. Wang, H. Wei, and Z. Guo, “Structural Evolution and Degradation Mechanism of Vectran Fibers upon Exposure to UV-radiation”, Polym Degrad Stab, 2013, 98, 1744-1753. https://doi.org/10.1016/j.polymdegradstab.2013.05.023
  16. D. K. Yong, H. N. Choi, J. W. Yang, and S. G. Lee, "Interfacial Adhesion Properties of Surface Treated Polyarylate Fiber with Polyethylene Naphthalate", J Adhesion and Interface, 2012, 13, 24-30. https://doi.org/10.17702/jai.2012.13.1.024
  17. http://en.wikipedia.org/wiki/Vectran
  18. Y. K. Kim, Master's Thesis, Pusan National University, Busan, Korea, 2011.
  19. S. C. Choi, T. I. Cheon, and Y. H. Lee, "Measurement Methods for Textile", Suhaksa, Seoul, 1997, pp.48-59.
  20. E. Kalfon-Cohen, A. Pegoretti, and G. Marom, “Annealing of Drawn Monofilaments of Liquid Crystalline Polymer Vectra/Vapor Grown Carbon Fiber Nanocomposites”, Polymer, 2010, 51, 1033-1041. https://doi.org/10.1016/j.polymer.2010.01.016
  21. I. Campoy, M. A. Gomez, and C. Marco, “Structure and Thermal Properties of Blends of Nylon 6 and a Liquid Crystal Copolyester”, Polymer, 1998, 39, 6279-6288. https://doi.org/10.1016/S0032-3861(98)00181-5
  22. D. A. Skoog and J. J. Leary, "Principles of Instrumental Analysis", 4th Ed., Saunders College Publishing, Philadelphia, PA, 1992, p.384.
  23. I. S. Kang, M. H. Mun, and J. J. Rha, "The Surface Morphology and Characteristics of Poly(ethylene Terephthalate) Film", J Korean Soc Cloth Text, 2010, 34, 1880-1888. https://doi.org/10.5850/JKSCT.2010.34.11.1880