DOI QR코드

DOI QR Code

담수 확산에 미치는 바람과 해저 지형의 영향

Wind and Bathymetry Effects on the Fresh Water Plume Structures

  • 이정우 (한국건설기술연구원 환경연구실) ;
  • 윤상린 (한국건설기술연구원 환경연구실) ;
  • 오혜철 (한국건설기술연구원 환경연구실)
  • Lee, Jungwoo (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Yun, Sang-Leen (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Oh, Hye-Ceol (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2014.10.08
  • 심사 : 2014.10.30
  • 발행 : 2014.10.30

초록

강어귀의 기하학적 특징과 바람의 방향(upwelling, onshore, downwelling, and offshore winds)에 의한 담수 확산의 변화에 대하여 3차원 해양 순환 모델인 Regional Ocean Modeling System (ROMS)을 이용하여 연구하였다. 총 4개의 임의의 강어귀를 가정하였으며, 담수가 수심이 깊어지는 바다(sloping shelf)에 진입했을 경우가 편평한 바다(flat shelf)에 진입한 경우에 비해 빠른 x, y 운동량(momentum)의 상실과 상대적으로 강한 Coriolis 효과로 인하여 외해로의 담수 확산이 제한되는 것으로 연구되었다. 바람은 수직혼합을 촉진시켜 성층현상을 파괴한다는 기존 연구에 반해 약용승풍(mild upwelling winds)과 외해풍(offshore winds)의 경우(${\mid}{\tau}_{\omega}{\mid}=0.01Pa$) 성층현상을 촉진시키는 것으로 연구되었다. 이와는 반대로 침강풍(downwelling winds)과 연안풍(onshore winds)의 경우 기존 연구와 같이 성층을 파괴하는 것으로 연구되었다. 해저 물길(submarine channel)은 담수확산에 직접적인 영향을 주며 물길의 방향 또는 폭 등과 같은 해저 물길의 기하학적 특징에 의해 담수의 확산 정도가 달라지는 것으로 연구되었다. 또한 해저 물길은 담수 확산을 해저 물길의 상층부로 강하게 제한하는 것으로 연구되었다.

The structures of fresh water plume depending on estuarine geometries and wind directions (upwelling, onshore, downwelling, and offshore winds) were studied using the Regional Ocean Modeling System (ROMS). Four idealized estuaries, which are different in bathymetry, were considered. The results showed that the fresh water plume was restricted close to the shore line where a river was connected to the sloping shelf rather than the flat shelf due to the fast momentum exchanges from x, y to z momentums on the sloping shelf. Mild upwelling and offshore winds (${\mid}{\tau}_{\omega}{\mid}=0.01Pa$) enhanced stratification on the contrast to previous studies which showed that winds destroyed stratification by enhanced vertical mixing. However, downwelling and onshore winds had similar effects on the vertical structure of the fresh water plume as in previous studies enhancing vertical mixing. The plume was confined above the underneath submarine channel, thus the plume path was directly affected by the direction of the submarine channel on the shelf.

키워드

참고문헌

  1. Garvine, R. W., "Estuary Plumes and Fronts in Shelf Waters: A Layer Model," J. Phys. Oceanogr., 17(11), 1877-1896(1987). https://doi.org/10.1175/1520-0485(1987)017<1877:EPAFIS>2.0.CO;2
  2. Garvine, R. W., "A dynamical system for classifying buoyant coastal discharges," Cont. Shelf Res., 15(13), 1585-1596(1995). https://doi.org/10.1016/0278-4343(94)00065-U
  3. O'Donnell, J., "The Formation and Fate of a River Plume: A Numerical Model," J. Phys. Oceanogr., 20, 551-569(1990). https://doi.org/10.1175/1520-0485(1990)020<0551:TFAFOA>2.0.CO;2
  4. Kourafalou, V. H., Oey, L.-Y., Wang, J. D. and Lee, T. N., "The fate of river discharge on the continental shelf 1. Modeling the river plume and the inner shelf coastal current," J. Geophys. Res., 101(C2), 3415-3434(1996). https://doi.org/10.1029/95JC03024
  5. Chao, S.-Y. and Boicourt, W. C., "Onset of Estuarine Plumes," J. Phys. Oceanogr., 16(12), 2137-2149(1986). https://doi.org/10.1175/1520-0485(1986)016<2137:OOEP>2.0.CO;2
  6. Chao, S.-Y., "River-Forced Estuarine Plumes," J. Phys. Oceanogr., 18(1), 72-88(1988). https://doi.org/10.1175/1520-0485(1988)018<0072:RFEP>2.0.CO;2
  7. Chao, S.-Y., "Wind-Driven Motion of Estuarine Plumes," J. Phys. Oceanogr., 18(8), 1144-1166(1988). https://doi.org/10.1175/1520-0485(1988)018<1144:WDMOEP>2.0.CO;2
  8. Oey, L.-Y. and Mellor, G. L., "Subtidal Variability of Estuarine Outflow, Plume, and Coastal Current: A Model Study," J. Phys. Oceanogr., 23, 164-171(1993). https://doi.org/10.1175/1520-0485(1993)023<0164:SVOEOP>2.0.CO;2
  9. Csanady, G. T., "Circulation Induced by River Inflow in Well Mixed Water over a Sloping Continental Shelf," J. Phys. Oceanogr., 14(11), 1703-1711(1984). https://doi.org/10.1175/1520-0485(1984)014<1703:CIBRII>2.0.CO;2
  10. Chapman, D. C. and Lentz, S. J., "Trapping of a Coastal Density Front by the Bottom Boundary Layer," J. Phys. Oceanogr., 24(7), 1464-1479(1994). https://doi.org/10.1175/1520-0485(1994)024<1464:TOACDF>2.0.CO;2
  11. Yankovsky, A. E. and Chapman, D. C., "A Simple Theory for the Fate of Buoyant Coastal Discharges," J. Phys. Oceanogr., 27(7), 1386-1401(1997). https://doi.org/10.1175/1520-0485(1997)027<1386:ASTFTF>2.0.CO;2
  12. Weaver, A. J. and Hsieh, W. W., "The Influence of Buoyancy Flux from Estuaries on Continental Shelf Circulation," J. Phys. Oceanogr., 17(11), 2127-2140(1987). https://doi.org/10.1175/1520-0485(1987)017<2127:TIOBFF>2.0.CO;2
  13. Scully, M. E., Friedrichs, C. and Brubaker, J., "Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field," Estuaries, 28(3), 321-326(2005). https://doi.org/10.1007/BF02693915
  14. Simpson, J. H., Brown, J., Matthews, J. and Allen, G., "Tidal straining, density currents, and stirring in the control of estuarine stratification," Estuaries, 13(2), 125-132(1990). https://doi.org/10.2307/1351581
  15. Simpson, J. H., Sharples, J. and Rippeth, T. P., "A prescriptive model of stratification induced by freshwater runoff," Estuarine, Coastal Shelf Sci., 33(1), 23-35(1991). https://doi.org/10.1016/0272-7714(91)90068-M
  16. Sharples, J., Simpson, J. H. and Brubaker, J. M., "Observations and Modelling of Periodic Stratification in the Upper York River Estuary, Virginia," Estuarine, Coastal Shelf Sci., 38(3), 301-312(1994). https://doi.org/10.1006/ecss.1994.1021
  17. Drijfhout, S. S., "Eddy-genesis and the related heat transport: a parameter study, in Mesoscale/synoptic Coherent Structures in Geophysical Turbulence," Elsevier, 50, 245-263(1989).
  18. Lindow, H., "Experimentelle Simulationen windangeregter dynamischer Muster in hochauflosenden numerischen Modellen," Institut fur Ostseeforschung Warnemunde(1996).
  19. Lee, J. and Valle-Levinson, A., "Influence of bathymetry on hydrography and circulation at the region between an estuary mouth and the adjacent continental shelf," Cont. Shelf Res., 41, 77-91(2012). https://doi.org/10.1016/j.csr.2012.04.006
  20. Garvine, R. W., "The impact of model configuration in studies of buoyant coastal discharge," J. Mar. Res., 59, 193-225(2001). https://doi.org/10.1357/002224001762882637
  21. Csanady, G. T. and Shaw, P. T., "The "Insulating" Effect of a Steep Continental Slope," J. Geophys. Res., 88(C12), 7519-7524(1983). https://doi.org/10.1029/JC088iC12p07519
  22. Wright, D. G., "On Quasi-Steady Shelf Circulation Driven by Along-Shelf Wind Stress and Open-Ocean Pressure Gradients," J. Phys. Oceanogr., 16, 1712-1714(1986). https://doi.org/10.1175/1520-0485(1986)016<1712:OQSSCD>2.0.CO;2
  23. Wright, D. G., "On the Alongshelf Evolution of an Idealized Density Front," J. Phys. Oceanogr., 19, 532-541(1989). https://doi.org/10.1175/1520-0485(1989)019<0532:OTAEOA>2.0.CO;2
  24. Lee, J. and Valle-Levinson, A., "Bathymetric effects on estuarine plume dynamics," J. Geophys. Res. Oceans, 118(4), 1969-1981(2013). https://doi.org/10.1002/jgrc.20119