DOI QR코드

DOI QR Code

카멜리나 (Camelina sativa L. cv. CAME)로부터 3 microsomal delta-12 fatty acid desaturase 유전자들의 분리 및 기능 분석

Isolation and functional analysis of three microsomal delta-12 fatty acid desaturase genes from Camelina sativa (L.) cv. CAME

  • 김효진 (전남대학교 농업생명과학대학 바이오에너지공학과) ;
  • 고영삼 (전남대학교 농업생명과학대학 바이오에너지공학과) ;
  • 김용휘 (세종대학교 생명과학대학 식품공학부) ;
  • 이상협 (세종대학교 생명과학대학 바이오자원공학과) ;
  • 김경남 (세종대학교 생명과학대학 분자생물학과) ;
  • 이긍주 (충남대학교 농업생명과학대학 원예학과) ;
  • 김기준 (아시아종묘(주)) ;
  • 서미정 (전남대학교 농업생명과학대학 바이오에너지공학과)
  • Kim, Hyojin (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Go, Young Sam (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Kim, Augustine Yonghwi (Department of Food Science & Technology, Sejong University) ;
  • Lee, Sanghyeob (Department of Bioresource engineering, Sejong University) ;
  • Kim, Kyung-Nam (Department of Molecular Biology, Sejong University) ;
  • Lee, Geung-Joo (Department of Horticultural Science, Chungnam National University) ;
  • Kim, Gi-Jun (Breeding Institute, Asia Seed Co. Ltd.) ;
  • Suh, Mi Chung (Department of Bioenergy Science and Technology, Chonnam National University)
  • 투고 : 2014.09.02
  • 심사 : 2014.09.22
  • 발행 : 2014.09.30

초록

카멜리나(Camelina sativa)는 십자화과(Brassicaceae)에 속하는 유지작물이다. 카멜리나 종자에는 건물 중의 약 40%에 해당하는 저장 오일을 가지고 있고, 이러한 저장오일은 식품뿐만 아니라 산업재료로 이용이 가능하다. Microsomal delta-12 fatty acid desaturase2 (FAD2) 효소는 oleic acid를 linoleic acid로 전환시키는데, 종자 내 oleic acid의 함량 차이를 보이는 품종들에서 FAD2 유전자의 polymorphism이 보고되었다. 본 연구에서는 카멜리나(Camelina sativa L. 품종 CAME)에 존재하는 3개의 FAD2 유전자를 발달하는 종자로부터 분리하였다. 3개의 카멜리나 FAD2 유전자의 염기서열 및 아미노산 서열은 카멜리나 품종 Sunesone과 SRS933으로부터 확인된 FAD2 유전자들과 여러 단자엽 및 쌍자엽 식물의 FAD2 유전자들의 염기서열 및 아미노산 서열과 상동성을 비교하였다. FAD2 효소의 활성을 결정짓는다고 알려진 histidine motif (HECGHH, HRRHH 그리고 HVAHH)와 효소 활성에 영향을 주는 SNP (single nucleotide polymorphism) 마커라고 알려진 소수성 아미노산 계열인 valine 혹은 isoleucine이 3 개의 카멜리나 FAD2에서도 잘 보존되어 있음을 확인하였다. 세개의 카멜리나 FAD2 유전자들 중 CsFAD2-1의 경우 카멜리나의 발달하는 조직에서 전반적으로 높은 발현 양상을 보이는 반면 CsFAD2-2와 CsFAD2-3.1은 꽃과 발달하는 종자에서 특이적인 발현을 보였다. 애기장대 fad2-2 돌연변이체에 3개의 카멜리나 FAD2를 각각 도입한 형질전환 식물체의 종자에는 애기장대 fad2-2 돌연변이체 종자대비 oleic acid의 함량이 감소하고, linoleic acid 함량은 증가하는 표현형이 관찰되었다. 이러한 결과는 카멜리나로부터 분리된 3개의 FAD2가 효소로서 활성을 가지고 있다는 것을 의미한다. 더불어 분리된 카멜리나의 FAD2 유전자는 종자 오일 성분이 변화된 유지작물을 개발하는데 응용될 수 있을 것이다.

Camelina sativa that belongs to Brassicaceae family is an emerging oilseed crop. Camelina seeds contain approximately 40% storage oils per seed dry weight, which are useful for human and animal diets and industrial applications. Microsomal delta-12 fatty acid desaturase2 (FAD2) catalyzes the conversion of oleic acid to linoleic acid. The polymorphisms of FAD2 genes are correlated with the levels of oleic acids in seed oils. Microsomal delta-12 fatty acid desaturase2 (FAD2) catalyzes the conversion of oleic acid to linoleic acid. The polymorphisms of FAD2 genes are correlated with the levels of oleic acids in seed oils. In this study, three CsFAD2 genes (CsFAD2-1, CsFAD2-2 and CsFAD2-3.1) were isolated from developing seeds of Camelina sativa (L.) cv. CAME. The nucleotide and deduced amino acid sequences of three CsFAD2 genes were compared with those from dicotyledon and monocotyledon plants including Camelina cultivars Sunesone and SRS933. Three histidine motifs (HECGH, HRRHH, and HVAHH) required for FAD activity and a hydrophobic valine or isoleucine residue, which is a SNP (single nucleotide polymorphism) marker related with enzyme activity are well conserved in three CsFAD2s. The expressions of CsFAD2-1 and CsFAD2-3.1 were ubiquitously detected in various Camelina organs, whereas the CsFAD2-2 transcripts were predominantly detected in flowers and developing seeds. The contents of oleic acids decreased, whereas the amounts of linoleic acid increased in dry seeds of transgenic fad2-2 lines expressing each CsFAD2 gene compared with fad2-2 mutant, indicating that three CsFAD2 genes are functionally active. The isolated CsFAD2 genes might be applicable in metabolic engineering of storage oils with high oleic acids in oilseed crops.

키워드

참고문헌

  1. Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259-266
  2. Belo A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1-10 https://doi.org/10.1007/s00438-007-0289-y
  3. Budin J, Breene W, Putnam D (1995) Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oils. J Am Oil Chem Soc 72:309-315 https://doi.org/10.1007/BF02541088
  4. Cheng J, Zhu L-H, Salentijn EMJ, Huang B, Gruber J, Dechesne AC, Krens FA, Qi W, Visser RG, and van Loo EN (2013) Functional analysis of the omega-6 fatty acid desaturase (CaFAD2) gene family of the oil seed crop Crambe abyssinica. BMC Plant Biol 13:146 https://doi.org/10.1186/1471-2229-13-146
  5. Chi X, Yang Q, Pan L, Chen M, He Y, Yang Z, Yu S (2011) Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep 30:1393-1404 https://doi.org/10.1007/s00299-011-1048-4
  6. Dyer JM, Chapital DC, Kuan JC, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol 130:2027-2038 https://doi.org/10.1104/pp.102.010835
  7. Gimeno RE, Cao J (2008) Thematic review series: glycerolipids. Mammalian glycerol-3-phosphate acyltransferases: new genes for an old activity. J Lipid Res 49:2079-2088 https://doi.org/10.1194/jlr.R800013-JLR200
  8. Guo HH, Li QQ, Wang TT, Hu Q, Deng WH, Xia XL, Gao HB (2013) XsFAD2 gene encodes the enzyme responsible for the high linoleic acid content in oil accumulated in Xanthoceras sorbifolia seeds. J Sci Food Agric 94:482-488
  9. Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, De Rocher J, Kiser J (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol 10:233 https://doi.org/10.1186/1471-2229-10-233
  10. Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU, Suh MC (2011) Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep 30:1881-1892 https://doi.org/10.1007/s00299-011-1095-x
  11. Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins EE, Huebert T, Sharpe AG, Parkin IA (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706
  12. Kang J, Snapp AR, Lu C (2011) Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol Biochem 49:223-229 https://doi.org/10.1016/j.plaphy.2010.12.004
  13. Kennedy EP (1961) Biosynthesis of complex lipids. Fed Proc Fed Am Soc Exp Biol 20:934-940
  14. Kim MJ, Kim H, Shin JS, Chung CH, Ohlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron. Mol Genet Genomics 276:351-368 https://doi.org/10.1007/s00438-006-0148-2
  15. Kim HU, Li Y, Huang AH (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17:1073-1089 https://doi.org/10.1105/tpc.104.030403
  16. Le Corre V, Roux F, Reboud X (2002) DNA polymorphism at FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. Mol Biol Evol 19(8):1261-1271 https://doi.org/10.1093/oxfordjournals.molbev.a004187
  17. Lee KR, Kim SH, Go YS, Jung SM, Roh KH, Kim JB, Suh MC, Lee S, Kim HU (2012) Molecular cloning and functional analysis of two FAD2 genes from American grape (Vitis labrusca L.). Gene 509:189-194 https://doi.org/10.1016/j.gene.2012.08.032
  18. Lee KR, Sohn IS, Jung JH, Kim SH, Roh KH, Kim JB, Suh MC, Kim HU (2013) Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Gene 531:253-262 https://doi.org/10.1016/j.gene.2013.08.095
  19. Lemieux B, Miquel M, Somerville C, Browse J. 1990. Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet 80:234-240
  20. Liu Q, Cao S, Zhou XR, Wood C, Green A, Singh S (2013) Nonsense-mediated mRNA degradation of CtFAD2-1 and development of a perfect molecular marker for olol mutation in high oleic safflower (Carthamus tinctorius L.). Theor Appl Genet 126:2219-2231 https://doi.org/10.1007/s00122-013-2129-2
  21. Lou Y, Schwender J, Shanklin J (2014) FAD2 and FAD3 desaturases form heterodimers that facilitate metabolic channeling in vivo. J Biol Chem 289(26):17996-8007 https://doi.org/10.1074/jbc.M114.572883
  22. Lozinsky S, Yang H, Forseille L, Cook GR, Ramirez-Erosa I, Smith MA (2014) Characterization of an oleate 12-desaturase from Physaria fendleri and identification of 5'UTR introns in divergent FAD2 family genes. Plant Physiol Biochem 75:114-122 https://doi.org/10.1016/j.plaphy.2013.12.016
  23. McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156-173 https://doi.org/10.1111/j.1365-313X.2004.01949.x
  24. Miquel M, James Jr D, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA 90:6208-6212 https://doi.org/10.1073/pnas.90.13.6208
  25. Moser BR (2010) Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol 22:270-273 https://doi.org/10.1002/lite.201000068
  26. Moser BR (2012) Biodiesel from alternative oilseed feedstocks: camelina and field pennycress. Biofuels 3:193-209 https://doi.org/10.4155/bfs.12.6
  27. Nam JW, Kappock TJ (2007) Cloning and transcriptional analysis of Crepis alpina fatty acid desaturases affecting the biosynthesis of crepenynic acid. J Exp Bot 58:1421-1432 https://doi.org/10.1093/jxb/erm005
  28. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810-812 https://doi.org/10.1038/313810a0
  29. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147-158 https://doi.org/10.1105/tpc.6.1.147
  30. Onate-Sanchez L, Vicente-Carbajosa J (2008) DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res Notes 1:93 https://doi.org/10.1186/1756-0500-1-93
  31. Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10:195 https://doi.org/10.1186/1471-2229-10-195
  32. Putnam DH, Budin JT, Field LA, Breene WM (1993) Camelina: A promising low-input oilseed. In: Janick J, Simon JE, (eds.), New crops, Wiley, New York, pp 314-322
  33. Qu J, Mao HZ, Chen W, Gao SQ, Bai YN, Sun YW, Geng YF, Ye J (2012) Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels 5:10 https://doi.org/10.1186/1754-6834-5-10
  34. Rodriguez-Rodriguez MF, Sanchez-Garcia A, Salas JJ, Garces R, Martinez-Force E (2013) Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Ind Crops Prod 50:673-679 https://doi.org/10.1016/j.indcrop.2013.07.042
  35. Rounsley SD, Last RL (2010). Shotguns and SNPs: how fast and cheap sequencing is revolutionizing plant biology. The Plant J 61:922-927 https://doi.org/10.1111/j.1365-313X.2009.04030.x
  36. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids1. Annu Rev Plant Physiol Plant Mol Biol 49:611-641 https://doi.org/10.1146/annurev.arplant.49.1.611
  37. Shanklin J, Whittle E, Fox BG (1994). Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochem 33:12787-12794 https://doi.org/10.1021/bi00209a009
  38. Shi J, Cao Y, Fan X, Li M, Wang Y, Ming F (2012) A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. Mol Breed 29(3):743-757 https://doi.org/10.1007/s11032-011-9587-5
  39. Vander Zwan C, Brodie SA, Campanella JJ (2000) The Intraspecific phylogenetics of Arabidopsis thaliana in worldwide populations. Systematic Botany 25:47-59 https://doi.org/10.2307/2666672
  40. Waraich EA, Ahmed Z, Ahmad R, Ashraf MY, Naeem MS, Rengel Z (2013) Camelina sativa, a climate proof crop, has high nutritive value and multiple-uses: a review. Aust J Crop Sci 7:1551-1559
  41. Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G-Y, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40(3):367-372 https://doi.org/10.1038/ng.85
  42. Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21:3885-3901 https://doi.org/10.1105/tpc.109.071795
  43. Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. The Plant J 19:645-653 https://doi.org/10.1046/j.1365-313x.1999.00555.x

피인용 문헌

  1. The FAD2 Gene in Plants: Occurrence, Regulation, and Role vol.8, pp.1664-462X, 2017, https://doi.org/10.3389/fpls.2017.01789