DOI QR코드

DOI QR Code

홀로그래픽 데이터 저장장치를 위한 4-레벨 오류정정 변조부호

4-level Error Correcting Modulation Codes for Holographic Data Storage System

  • Lee, Jaehun (Soongsil University, School of Electronic Engineering) ;
  • Lee, Jaejin (Soongsil University, School of Electronic Engineering)
  • 투고 : 2014.09.15
  • 심사 : 2014.09.23
  • 발행 : 2014.10.31

초록

멀티레벨 홀로그래픽 데이터 스토리지 시스템은 픽셀당 1비트 이상을 저장할 수 있기 때문에 용량에서 큰 이점을 갖는다. 만약 부호율이 2/3인 변조부호라면 2/3(symbol/pixel)은 4/3(bit/pixel)이고, 이것은 1pixel에 약 1.3개 bit를 담을 수 있다. 본 논문에서는 멀티레벨 홀로그래픽 데이터 저장장치에서 한 픽셀이 4-레벨을 가지는 경우, 최소 유클리디안 거리가 3과 4인 변조부호를 각각 제안하였다. 제안한 변조부호는 랜덤한 경우보다 훨씬 더 좋은 성능을 보였고, 거리가 클수록, 성능이 더 좋아지는 것을 보였다.

Mutilevel holographic data storage systems have a big advantage for capacity since it can store more than one bit per pixel. For instance, 2/3 modulation code stores 2/3(symbol/pixel) and 4/3(bit/pixel). Then it is about 1.3 bits per one pixel. In this paper, we propose two 4-level modulation codes, which have the minimum Euclidean distances of 3 and 4, respectively. The proposed codes perform better than random data. The performance of larger minimum distance code shows better than that of shorter one.

키워드

참고문헌

  1. S. Kim, J. Kim, and J. Lee, "A simple 2/3 modulation code for multi-level holographic data storage," in Proc. Int. Symp. Optical Memory (ISOM 2010), Session Tu-I-14, Oct. 2010.
  2. D. Park and J. Lee, "Modeling of the inter-page interference on the holographic data storage systems," J. KICS, vol. 35, no. 7, pp. 581-586, Jul. 2010.
  3. L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," in Proc. IEEE, vol. 92, no. 8, pp. 1231-1280, Aug. 2004. https://doi.org/10.1109/JPROC.2004.831212
  4. E. L. Kral, J. F. Walkup, and M. O. Hagler, "Correlation properties of random phase diffusers for multiplex holography," Appl. Opt., vol. 21, no. 7, pp. 1281-1290, Apr. 1982. https://doi.org/10.1364/AO.21.001281
  5. K. Park, S. Kim, J. Kim, and J. Lee, "6/9 4-ary modulation code for 4-level holographic data storage," in Proc. Int. Symp. Optical Memory (ISOM 2010), Session Tu-I-21, Oct. 2010.
  6. J. Kim and J. Lee, "Two-dimensional 5:8 modulation code for holographic data storage," Jpn. J. Appl. Phys., vol. 48, no. 3, pp. 03A031, Mar. 2009.
  7. D. E. Pansatiankul and A. A. Sawchuk, "Multi-dimensional modulation codes and error correction for page-oriented optical data storage," in Proc. SPIE, vol. 4342, pp. 393-400, Jan. 2002.
  8. J. Kim, J. Wee, and J. Lee, "Error correcting 4/6 modulation codes for holographic data storage," Jpn. J. Appl. Phys., vol. 49, no. 8, pp. 08KB04, Aug. 2010.
  9. G. Kim and J. Lee, "2/3 modulation code and its Viterbi decoder for 4-level holographic data storage," J. KICS, vol. 38A, no. 10, pp. 827-832, Oct. 2013. https://doi.org/10.7840/kics.2013.38A.10.827
  10. J. Kim and J. Lee, "Two-dimensional SOVA and LDPC codes for holographic data storage system," IEEE Trans. Magn., vol. 45, no. 5, pp. 2260-2263, May 2009. https://doi.org/10.1109/TMAG.2009.2016260
  11. J. Kim and J. Lee, "Partial response maximum likelihood detections using two-dimensional soft output Viterbi algorithm with two-dimensional equalizer for holographic data storage," Jpn. J. Appl. Phys., vol. 48, no. 3, pp. 03A033, Mar. 2009.
  12. G. Burr, G. Barking, H. Coufal, J. Hoffnagle, C. Jefferson, and M. Neifeld, "Gray-scale data pages for digital holographic data storage," Opt. Lett., vol. 23, no. 15, pp. 1218-1220, Aug. 1998. https://doi.org/10.1364/OL.23.001218
  13. B. King, G. Burr, and M. Neifeld, "Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage," Appl. Opt., vol. 42, no. 14, pp. 2546-2559, May 2003. https://doi.org/10.1364/AO.42.002546