DOI QR코드

DOI QR Code

A Review of Corrosion and Hydrogen Diffusion Behaviors of High Strength Pipe Steel in Sour Environment

  • Received : 2014.10.17
  • Accepted : 2014.10.23
  • Published : 2014.10.31

Abstract

A brief overview is given of the corrosion and hydrogen diffusion behaviors of high strength pipe steel in sour environment. Firstly, hydrogen adsorption and diffusion mechanism of the pipe steel is introduced. Secondly, the effect of iron sulfide film precipitated as a result of the corrosion reaction on the steel surface on hydrogen reduction reaction and subsequent hydrogen permeation through the steel is discussed. Moreover, the hydrogen diffusion behavior of the pipe steel under tensile stress in both elastic and plastic ranges is reviewed based on a number of experimental permeation data and theoretical models describing the hydrogen diffusion and trapping phenomena in the steel. It is hoped that this paper will result in significant academic contributions in the field of corrosion and hydrogen related problems of the pipe steel used in sour environment.

Keywords

References

  1. K. Kiuchi and R. B. Mclellan : The solubility and diffusivity of hydrogen in well-annealed and deformed iron, Acta Metallurgica, 31 (1983), 961- 984 https://doi.org/10.1016/0001-6160(83)90192-X
  2. S. J. Kim, D. W. Yun, H. G. Jung and K. Y. Kim : Determination of hydrogen diffusion parameters of ferritic steel from electrochemical permeation measurement under tensile loads, Journal of The Electrochemical Society, 161 (12) (2014), E173-E181 https://doi.org/10.1149/2.1021412jes
  3. Y. Huang, A. Nakajima, A. Nishikata, and T. Tsuru : Effect of mechanical deformation on permeation of hydrogen in iron, ISIJ International, 43 (2003), 548-554 https://doi.org/10.2355/isijinternational.43.548
  4. S. J. Kim, H. G. Jung and K. Y. Kim : Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment, Electrochimica Acta, 78 (2012), 139-146 https://doi.org/10.1016/j.electacta.2012.05.147
  5. G. T. Park, S. U. Koh, H. G. Jung and K. Y. Kim : Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel, Corrosion Science 50 (2008), 1865-1871 https://doi.org/10.1016/j.corsci.2008.03.007
  6. H. -Y. Liou, R. -I. Shieh, F. -I. Wei and S. -C. Wang : Roles of microalloying elements in hydrogen induced cracking resistant property of HSLA steels, Corrosion, 49 (1993) 389-398
  7. C. Mendibide and T. Sourmail : Composition optimization of high-strength steels for sulfide stress cracking resistance, Corrosion Science, 51 (2009), 2878-2884 https://doi.org/10.1016/j.corsci.2009.08.013
  8. W. K. Kim, H. G. Jung, G. T. Park, S. U. Goh and K. Y. Kim, Relationship between hydrogen-induced cracking and type I sulfide stress cracking of highstrength linepipe steel, Scripta Materialia 62 (2010), 195-198 https://doi.org/10.1016/j.scriptamat.2009.10.028
  9. P. G. Kumar and K. Yu-ichi : Diffusible hydrogen in steel weldments, Transactions of JWRI 42 (2013), 39-62
  10. S. J. Kim, H. G. Jung, G. T. Park and K. Y. Kim : Effect of Cu and Ni on sulfide film formation and corrosion behavior of pressure vessel steel in acid sour environment, Applied Surface Science 313 (2014) 396-404 https://doi.org/10.1016/j.apsusc.2014.06.003
  11. J. O'M. Bockris, J. McBreen and L. Nanis : The hydrogen evolution kinetics and hydrogen entry into ${\alpha}-iron$, Journal of Electrochemical Society, 112 (1965), 1025-1031 https://doi.org/10.1149/1.2423335
  12. P. W. Bolmer : Polarization of Iron in $H_{2}S-NaHS$ Buffers, Corrosion, 21 (1965), 69-75 https://doi.org/10.5006/0010-9312-21.3.69
  13. Z. A. Iofa and F. L. Kam : Protection of metal, Zashchita Metallov, 10 (1974) 17
  14. A. Kawashima, K. Hashimoto and S. Shimodaira : Hydrogen electrode reaction and hydrogen embrittlement of mild steel in hydrogen sulfide solutions, Corrosion, 32 (1976), 321-332 https://doi.org/10.5006/0010-9312-32.8.321
  15. Y. T. He, J. T. Wilson and R. T. Wilkin : Impact of iron sulfide transformation on trichloroethylene degradation, Geochimica et Cosmochimica Acta. 74 (2010), 2025-2039. https://doi.org/10.1016/j.gca.2010.01.013
  16. H. Kobayashi, T. Nozue, T. Matsumura and T. Suzuki : The low-temperature specific heat of FeS and M0.875X (M = Fe, Co; X = S, Se) with a NiAs-like structure, Journal of Physics-Condensed Matter, 11 (1999), 8673-8679 https://doi.org/10.1088/0953-8984/11/44/305
  17. NACE standard TM0284 : Evaluation of pipeline and pressure vessel steels for resistance to hydrogen induced cracking, NACE International, Houston, TX (2003)
  18. H. Inagaki, M. Tanimura, I. Matsushima and T. Nishimura : Effect of Cu on the hydrogen induced cracking of the pipe line steel, ISIJ International, 18 (1978),149-156
  19. R. A. Carneiro, R. C. Ratnapuli and V. d. F. C. Lins : The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking, Materials Science and Engineering, A357 (2003), 104-110
  20. R. Blondeau : Problems related to use of low apply steels in $H_{2}S$ environments, Ironmak. Steelmak. 18 (3) (1991), 201-210
  21. G. M. Waid and R.T. Ault : The development of high strength casing steels with improved hydrogen sulfide cracking resistance for sour service, Proceedings of the NACE International Conference, Colorado Springs, USA, (1979)
  22. G. C. Schmid : The resistance of nickel containing ssteels and weld metals to sulphide stress corrosion cracking, Proceedings of the NACE International Conference, Colorado Springs, USA, (1979)
  23. B. E. Wilde, C. D. Kim and J. C. Turn : The influence of noble metal additions on the sulfide corrosion performance of AISI 4130 steel, Corrosion, 38 (1982), 515-524 https://doi.org/10.5006/1.3593854
  24. J. S. Yoo, G. Xian, M. J. Lee, Y. D. Kim, N. H. Kang : Hydrogen embrittlement resistance and diffusible hydrogen desorption behavior of multipass FCA weld metals, Journal of the Korean Welding and Joining Society, 31 (2013) 112-118. https://doi.org/10.5781/KWJS.2013.31.6.112
  25. D. Y. Kim, I. S. Hwang, D. C. Kim, M. J. Kang : Effect of preheat temperature on diffusible hydrogen content in weld metal deposited using flux cored wire, Journal of welding and joining, 32 (2014) 18-21 https://doi.org/10.5781/JWJ.2014.32.2.18
  26. P. Bastien and P. Azou : Influence de L' croussage Sur le Frottement Inttirieur du Fer et de L'ancior, C. R. Academy of Sciences at Paris. 232 (1951) 1845-1848
  27. M. Kurkela and R. M. Latanision : The effect of plastic deformation on the transport of hydrogen in nickel, Scripta Metallurgica, 13 (1979), 927-932 https://doi.org/10.1016/0036-9748(79)90322-3
  28. M. Kurkela, G. S. Frankel, R. M. Latanision, S. Suresh and R. O. Ritchie : Influence of plastic deformation on hydrogen transport in 2.25Cr-1Mo steel, Scripta Metallurgica, 16 (1982), 455-459 https://doi.org/10.1016/0036-9748(82)90172-7
  29. T. Zakroczymski : The effect of straining on the transport of hydrogen in iron and stainless steel, Corrosion, 41 (1985) 485-489 https://doi.org/10.5006/1.3583831
  30. H. E. Townsend : Effects of stress on entry and permeation of hydrogen in iron, Corrosion, 26 (1970), 361-362 https://doi.org/10.5006/0010-9312-26.9.361
  31. A. McNabb and P. K. Foster : A new analysis of the diffusion of hydrogen in iron and ferritic steels, Transactions of the Metallurgical Society of A.I.M.E. 227 (1963), 618-627
  32. R. A. Oriani : The diffusion and trapping of hydrogen in steel, Acta Metallurgica, 18 (1970), 147-157 https://doi.org/10.1016/0001-6160(70)90078-7
  33. M. Iino : A more generalised analysis of hydrogen trapping, Acta Metallurgica, 30 (1982) 367-375 https://doi.org/10.1016/0001-6160(82)90216-4
  34. A. Turnbull, M. W. Carroll and D. H. Ferriss : Analysis of hydrogen diffusion and trapping in a 13 % chromium martensitic stainless steel, Acta Metallurgica, 37 (1989) 2039-2046 https://doi.org/10.1016/0001-6160(89)90089-8
  35. P. Castano-Rivera, V. P. Ramunni and P. Bruzzoni : Hydrogen trapping in an API 5L X60 steel, Corrosion Science, 54 (2012) 106-118

Cited by

  1. Numerical study on hydrogen permeation of ferritic steel evaluated under constant load vol.33, pp.2, 2017, https://doi.org/10.1080/02670836.2016.1162001
  2. Corrosion problems in the oil country tubular goods and their mitigation – a review vol.64, pp.5, 2017, https://doi.org/10.1108/ACMM-09-2016-1708
  3. A Comparative Investigation of the Corrosion Resistance and HIC Suceptibility of API 5L X65 and API 5L X80 Steels vol.22, pp.1, 2019, https://doi.org/10.1590/1980-5373-mr-2018-0191