DOI QR코드

DOI QR Code

The Method for Extracting Meaningful Patterns Over the Time of Multi Blocks Stream Data

시간의 흐름과 위치 변화에 따른 멀티 블록 스트림 데이터의 의미 있는 패턴 추출 방법

  • 조경래 (서일대학교 컴퓨터소프트웨어과) ;
  • 김기영 (서일대학교 컴퓨터소프트웨어과)
  • Received : 2014.09.12
  • Accepted : 2014.10.08
  • Published : 2014.10.31

Abstract

Analysis techniques of the data over time from the mobile environment and IoT, is mainly used for extracting patterns from the collected data, to find meaningful information. However, analytical methods existing, is based to be analyzed in a state where the data collection is complete, to reflect changes in time series data associated with the passage of time is difficult. In this paper, we introduce a method for analyzing multi-block streaming data(AM-MBSD: Analysis Method for Multi-Block Stream Data) for the analysis of the data stream with multiple properties, such as variability of pattern and large capacitive and continuity of data. The multi-block streaming data, define a plurality of blocks of data to be continuously generated, each block, by using the analysis method of the proposed method of analysis to extract meaningful patterns. The patterns that are extracted, generation time, frequency, were collected and consideration of such errors. Through analysis experiments using time series data.

모바일 통신과 사물 인터넷(IoT) 환경에서 시간에 따른 데이터의 분석 기술은 주로 의미 있는 정보를 찾기 위해 수집 된 데이터에서 의미있는 패턴을 추출하기 위해 사용된다. 기존의 데이터 마이닝을 이용한 분석 방법은 데이터 수집이 어렵고 시간의 경과와 관련된 시계열 데이터의 변경을 반영하기 위해 완료 상태에 기초하여 해석되어야 한다. 이러한 패턴의 다양성, 대용량성, 연속성 등의 여러 가지 특성을 가진 데이터 스트림의 분석을 위한 방법으로 멀티 블록 스트리밍 데이터 분석(AM-MBSD) 방법을 제안한다. 의미 있는 데이터 추출을 위해 멀티 블록 스트리밍 데이터의 패턴을 추출하고 추출된 연속적 데이터를 여러 개의 블록으로 정의하고 제안 방법의 검증을 위해 각 데이터 블록의 데이터 패턴 생성 시간, 주파수를 수집하고 시계열 데이터를 분석, 실험하였다.

Keywords

References

  1. Yon-sik Lee, Hyun Ko, "Kwangjong Kim, Extraction of Optimal Moving Pattern using Maximum Frequent 2- Sequence", Korean Institute of Information Scientists and Engineers, Vol.35, No.1(D), pp.367-362, 2008.
  2. Jaeeun Jung, "For mining of sensor network data streams Ontology-based pre-processing techniques", Korea Intelligent Information System Society, Vol.15, No.3, pp.67-80, 2009.
  3. Pponomartskoo, Youngjin Nam, Daewha Seo, "Homomorphic Cryptoschemes based Secure Data Aggregation for Wireless Sensor Networks", Korean Institute of Information Scientists and Engineers, Vol.35, No.1(A), pp.235-236, 2008.
  4. Hee-Sung Kim, Je-Young Lee, Jae Doo Park, Kwang Ho Choi, Young Joon Lee, Jong-Joon Choi, Min Woo Kim, Hyung Keun Lee, "A Conceptual Study to Share Real-Time Data Stream from Continuously Operating GPS/GNSS Reference Stations", Korean Institute of Information Scientists and Engineers, Vol.35, No.1(A), pp.136-142, 2009.
  5. P. Domingos and G. Hulten, "Mining high-speed data streams", In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery ND Data Mining, 2000.
  6. "Data mining techniques", http://www.aistudy.co.kr/ learning/ mining/technique_jang.htm#_bookmark_19d3d80
  7. Yong-yoon Suh, Hak-yeon Lee, Yon-tae Park, "Analysis and Visualization of Structure of Smartphone Application Service Using Text-Minimg and the set-covering algorithm", International journal of Mobile Communications, Vol.10, No.1, pp.1-20, 2012. https://doi.org/10.1504/IJMC.2012.044520
  8. Yong-Jun Cho, Joon Hur, "A Study on Improving the Predict Accuracy Rate of Hybrid Model Technique Using Error Pattern Modeling: Using Logistic Regression and Discriminant Analysis", Journal of the Korean Data & Information Science Society, Vol.17, No.2, pp.268-278, 2006.
  9. Hong-Cheol Lee, "A Study on the join algorithm of neural networks (C4.5) decision tree for the customers classification of mobile communication", Journal of the Korea Intelligent Information System Society, Vol.9, No.1, pp.139-155, 2003.
  10. Tae-Bok Yoon, Jee-Hyong Lee, Kyeong-Rae Cho, "Advanced Learner's Modeling based on Weighted Support Vector Data Description(SVDD)", Journal of the Korean Institute of Information Scientists and Engineers, Vol.40, No.1, pp.46-52, 2013.
  11. J. Xi, "Outlier Detection Algorithms in Data Mining", IEEE Second Int. Symp. on Intelligent IT Application, Vol.1, pp.94-97, 2008.