DOI QR코드

DOI QR Code

Recovery of Li from the Lithium Containing Waste Solution by D2EHPA

리튬함유 폐액으로부터 D2EHPA에 의한 리튬의 회수

  • Received : 2014.07.10
  • Accepted : 2014.09.04
  • Published : 2014.10.30

Abstract

A study on the solvent extraction for the recovery of Li from lithium-containing waste solution was investigated using $D_2EHPA$ as an extractant. The experimental parameters, such as the pH of the aqueous solution, concentration of extractant and phase ratio were observed. Experimental results showed that the extraction percentage of Li was increased with increasing the equilibrium pH. More than 50% of Li was extracted in eq. pH 6.0 by 20% $D_2EHPA$. From the analysis of McCabe-Thiele diagram, 95% of Li was extracted by four extraction stage at phase ratio(O/A) of 3.0. Stripping of Li from the loaded organic phases can be accomplished by sulfuric acid as a stripping reagent and 90 ~ 120 g/L of $H_2SO_4$ was effective for the stripping of Li. Finially, Li was concentrated about 11.85 g/L by continuous stripping process, and then lithium carbonate was prepared by precipitation method.

리튬함유 폐액에서 $D_2EHPA$를 추출제로 사용하여 용매추출법에 의해 리튬의 회수에 관한 연구를 실시하였다. 수용액상의 pH, 추출제 농도 및 상비 변화 등 리튬의 추출에 영향을 미칠 수 있는 인자들에 대한 실험을 실시하였다. 실험 결과, 평형 pH가 증가할수록 리튬의 추출율이 증가하였고, pH 6.0에서 20% $D_2EHPA$에 의해 최대 50%의 리튬 추출율을 보였다. McCabe-Thiele diagram 분석으로 부터 리튬은 상비(O/A) 3.0에서 4단으로 95%이상 추출이 가능하였다. 한편 탈거액으로 황산을 사용하였고, 리튬 탈거의 최적 황산 농도는 90 ~ 120 g/L 이었다. 연속탈거 공정을 통하여 리튬이 11.85 g/L까지 농축 가능하였으며, 이 용액으로 부터 침전법에 의해 탄산리튬의 제조가 가능하였다.

Keywords

References

  1. KERI. Oversea Economic Research Institute "Industrial trend of Lithium secondary batteries", Vol. 2011-2012.
  2. Uong Chon, Gichun Han, Kiyoung Kim and Ki Hong Kim, 2010 : "Current Status of Lithium Resources" J. of Korean Inst. of Resources Recycling. 19(3), 3-8.
  3. J. Xu, H.R. Thomas, R.W. Francis, et al., 2008 : "A review of processes and technologies for the recycling of lithiumion secondary batteries." J. Power sources 177, 512-527. https://doi.org/10.1016/j.jpowsour.2007.11.074
  4. Dorella, G., Mansur, M., 2007 : "A study of the separation of cobalt from spent Li-ion battery residues." J. Power sources 170, 210-215. https://doi.org/10.1016/j.jpowsour.2007.04.025
  5. Swain, B., Jeong., Lee, J.C. et al., 2007 : "Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium batteries." J. Power sources 167, 536-544. https://doi.org/10.1016/j.jpowsour.2007.02.046
  6. Zhang, W.P., Yokoyama, T., Itabashi, O., et al., 1998 : "Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries." Hydrometallurgy 47, 259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  7. Shin, S.M., Kim, N.H., Sohn, J. S., 2005 : "Development of a metal recovery process from Li-ion battery wastes." Hydrometallurgy 79, 172-181. https://doi.org/10.1016/j.hydromet.2005.06.004
  8. T. Georgi-Maschler., B. Friedrich, R. Weyhe, H. Heegn, M. Rutz, 2012 : "Development of a recycling process for Li-ion batteries" J. of Power Source 207, 173-182. https://doi.org/10.1016/j.jpowsour.2012.01.152
  9. JP Patent 2006-57142 "Method for recovery of lithium"
  10. Jae-Woo Ahn, Hyo-Jin Ahn, Seong-Ho Son and Ki-Woong Lee, 2012 : "Solvent extraction of Ni and Li from sulfate leach liquor of the cathode active materials of spent of Liion batteries by PC88A" J. of Korean Inst. of Resources Recycling, 21(6), 58-64.
  11. O. Sitando, P.L. Crouse, 2012 : "Processing of a Zimbabwean petalite to obtain lithium carbonate' Internal Journal of Mineral Processing, 102-103, 45-50. https://doi.org/10.1016/j.minpro.2011.09.014

Cited by

  1. A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis vol.57, pp.10, 2014, https://doi.org/10.3365/kjmm.2019.57.10.656