DOI QR코드

DOI QR Code

Antioxidant and Nitric Oxide Inhibitory Activities of Pigments from Chionoecetes japonicas Rathbun

홍게 (Chionoecetes japonicas Rathbun) 껍질 색소의 항산화 활성 및 Nitric Oxide 생성억제 효과

  • Park, Byungju (Busanil Science High School) ;
  • Baek, Seung Oh (Division of Marine Environment and Bioscience, Korea Maritime and Ocean University) ;
  • Song, Young-Sun (Center of Smart Foods and Drugs and Food Science Institute, Inje University) ;
  • Seo, Youngwan (Division of Marine Environment and Bioscience, Korea Maritime and Ocean University)
  • 박병주 (부산일과학고등학교) ;
  • 백승오 (한국해양대학교 해양환경생명과학부) ;
  • 송영선 (인제대학교 식의약생명공학과) ;
  • 서영완 (한국해양대학교 해양환경생명과학부)
  • Received : 2014.09.12
  • Accepted : 2014.10.13
  • Published : 2014.10.30

Abstract

In the present study, antioxidant activities of two crude pigments (acetone and MeOH) and their solvent fractions (n-hexane, 85% aq.MeOH, n-BuOH, and water fractions) from red crab shell were evaluated by measuring 1,1-diphenyl-2-picryl hydrazyl (DPPH), peroxynitrites, and degree of production of reactive oxygen species (ROS) in HT 1080 cells as well as the extent of oxidative damage of genomic DNA purified from HT 1080 cells. From comparative analysis, 85% aq.MeOH fraction showed the strongest scavenging effect on both peroxynitrite in vitro and intracellular ROS in HT 1080 cells. Protective activities of these samples against hydroxyl radical-mediated genomic DNA damage were also investigated. 85% aq.MeOH and n-BuOH fractions significantly inhibited oxidative damage of purified genomic DNA. On the other hand, we investigated their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. All samples significantly reduced NO production. Among the samples, n-hexane and water solvent fractions most effectively inhibited NO.

Keywords

References

  1. Choi, J. H. (2010) Green tech for human. Tech & Future 10: 28-31
  2. Griffiths, J. C. (2005) Coloring foods & beverages. Food Technol- Chicago 59: 38-44.
  3. Cheesman, D. F. and J. Prebble (1966) Astaxanthin ester as a prosthetic group: a carotenoprotein from the hermit crab. Comp. Biochem. Physiol. 17: 929-935. https://doi.org/10.1016/0010-406X(66)90132-0
  4. Fox, D. L (1973) Chitin-bound keto-carotenoids in a crustacean carapace. Comp. Biochem. Physiol. 44B: 953-962.
  5. Higuera-Ciapara I., L. Flix-Valenzuela, and F. M. Goycoolea (2006) Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. 46: 185-196. https://doi.org/10.1080/10408690590957188
  6. Jang, J. T., W. H. Seo, and H. H. Baek (2009) Enzymatic hydrolysis optimization of a snow crab processing by-product. Korean. J Food Sci. Technol. 41: 622-627.
  7. No, H. K. and S. P. Meyers (1992) Utilization of crawfish processing wastes as carotenoids, chitin, and chitosan sources. J. Korean Soc. Food Nutr. 21: 319-326.
  8. Noh, K. H., K. H. Min, B. Y. Seo, S. H. Kim, Y. W. Seo, and Y. S. Song (2012) Characteristics of protein from red crab (Chionoecetes japonicus) shell by commercial proteases. Korean J. Nutr. 45: 429-436. https://doi.org/10.4163/kjn.2012.45.5.429
  9. Yoon, N. Y., K. B. Shim, C. W. Lim, and S. B. Kim (2013) Antioxidant and angiotensin I converting enzyme inhibitory activities of red snow crab Chionoecetes japonicas shell hydrolysate by enzymatic hydrolysis. Fish. Aquat. Sci. 16: 237-242.
  10. Ahn, J. S., W. J. Cho, E. J. Jeong, and Y. J. Cha (2006) Changes in volatile flavor compounds in red snow crab Chionoecetes japonicus cooker effluent during concentration. J. Korean Fish. Soc. 39: 437-440. https://doi.org/10.5657/kfas.2006.39.6.437
  11. Ahn, J. S., E. J. Jeong, and Y. J. Cha (2014) Volatile flavor compounds of a crab-like flavoring base made using reaction flavor technology. J. Korean Soc. Food Sci. Nutr. 43: 102-109. https://doi.org/10.3746/jkfn.2014.43.1.102
  12. Ahn, J. S., E. J. Jeong, W. J. Cho, and Y. J. Cha (2014) Optimal conditions of reaction flavor for synthesis of crab-like flavorant from snow crab cooker effluent. J. Korean Soc. Food Sci. Nutr. 43: 128-134. https://doi.org/10.3746/jkfn.2014.43.1.128
  13. Baek, J. H., E. J. Jeong, S. Y. Jeon, and Y. J. Cha (2011) Optimal conditions for enzymatic hydrolysate of snow crab Chionoecetes japonicus cooker effluent using response surface methodology. Korean J. Fish. Aquat. Sci. 44: 99-103. https://doi.org/10.5657/kfas.2011.44.2.099
  14. Jang, J. T., W. H. Seo, and H. H. Baek (2009) Enzymatic hydrolysis optimization of a snow crab processing by-product department of food engineering. Korean J. Food Sci. Technol. 41: 622-627.
  15. Noh, K. H., K. H. Min, B. Y. Seo, S. H. Kim, Y. W. Seo, and Y. S. Song (2012) Characteristics of protein from red crab (Chionoecetes japonicus) shell by commercial proteases. Korean J. Nutr. 45: 429-436. https://doi.org/10.4163/kjn.2012.45.5.429
  16. Guerin, M., M. E. Huntley, and M. Olaizola (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21: 210-216. https://doi.org/10.1016/S0167-7799(03)00078-7
  17. Kurahige, M., E. Okimasu, M. Inoue, and K. Utsumi (1990) Inhibition of oxidative injury of biological membranes by astaxanthin. Physiol. Chem. Phys. Med. NMR 22: 27-38.
  18. Naguib, Y. M. A (2000) Antioxidant activities of astaxanthin and related carotenoids. J. Agr. Food Chem. 48: 1150-1154. https://doi.org/10.1021/jf991106k
  19. Palozza, P. and N. I. Krinsky (1992) Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch. Biochem. Biophys. 297: 291-295. https://doi.org/10.1016/0003-9861(92)90675-M
  20. Kwak, T. W., J. Y. Cha, C. W. Lee, Y. M. Kim, B. H. Yoo, S. G. Kim, J. M. Kim, S. Park, and W. G. An (2011) Anti-Inflammatory and antioxidant effect of astaxanthin derived from microalgae. J. Life Sci. 21: 1377-1384. https://doi.org/10.5352/JLS.2011.21.10.1377
  21. Blois, M. S. (1998) Antioxidant determinations by the use of a stable free radical. Nature 26: 1199-1200.
  22. Kooy, N. W., J. A. Royal, H. Ischiropoulos, and J. S. Beckman (1994) Peroxynitrite mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16: 149-156 https://doi.org/10.1016/0891-5849(94)90138-4
  23. Milne, L., P. Nicotera, S. Orrenius, and M. Burkitt (1993) Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Pro-oxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304: 102-109. https://doi.org/10.1006/abbi.1993.1327
  24. Okimoto, Y., A. Watanabe, E. Niki, T. Yamashita, and N. Noguchi (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474: 137-140. https://doi.org/10.1016/S0014-5793(00)01587-8
  25. Nataliya, B. and N. Andrei (2005) A spectrophotometric assay for nitrate in an excess of nitrite. Nitric Oxide 13: 93-97. https://doi.org/10.1016/j.niox.2005.05.002
  26. Poot, M, A. Verkerk, J. F. Koster, and J. F. Jongkind (1986) De novo synthesis of glutathione in human fibroblasts during in vitro ageing and in some metabolic diseases as measured by a flow cytometric method. Biochim. Biophys. Acta 883: 580-584. https://doi.org/10.1016/0304-4165(86)90300-4
  27. Shahidi, F. and J. Synowiecki (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chinoecefes opifio) and shrimp (Pandafus borealis) processing discards. J. Agric. Food Chem. 39: 1527-1532. https://doi.org/10.1021/jf00008a032
  28. Kim, S., E. Cho, G. Yoo, J. Yoo, S. M. Son, M. J. In, D. C. Kim, and H. J. Chae (2009) Physiological activity of astaxanthin and its inclusion complex with cyclodextrin. KSBB J. 24: 570-578.
  29. Virag, L., E. Szabo, P. Gergely, and C. Szabo (2003) Peroxynitrite induced cytotoxicity: mechanism and opportunities for intervention. Toxicol. Lett. 140-141: 113-124. https://doi.org/10.1016/S0378-4274(02)00508-8
  30. Epe, B., D. Ballmaier, I. Roussyn, K. Briviba, and H. Sies (1996) DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucleic Acids Res. 24: 4105-4110. https://doi.org/10.1093/nar/24.21.4105
  31. Bordan, C (2001) Nitric oxide and the immune response. Nat. Immunol. 2: 907-916. https://doi.org/10.1038/ni1001-907
  32. Pompella, A., A. Visvikis, A. Paolicchi, V. Tata, and A. F. Casini (2003) The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 66: 1499-1503. https://doi.org/10.1016/S0006-2952(03)00504-5
  33. Saw, C. L. L., A. Y. Yang, Y. Guo, and A. N. T. Kong (2013) Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2-ARE pathway. Food Chem. Toxicol. 62: 869-875. https://doi.org/10.1016/j.fct.2013.10.023
  34. Higuera-Ciapara, I., L. Fexlix-Valenzuela, and F. M. Goycoolea (2006) Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. 46: 185-196. https://doi.org/10.1080/10408690590957188