DOI QR코드

DOI QR Code

A Simple Temperature Dependent Model to Predict the Bloom of Aurelia Aurita Polyps

보름달물해파리 폴립의 대량출현 예측을 위한 온도 종속 모델

  • Jin, Hong Sung (Department of Mathematics, Chonnam National University) ;
  • Oh, Choon Young (Department of Mathematics Education, Chonnam National University) ;
  • Choi, Il Soo (Department of Statistics, Chonnam National University) ;
  • Hwang, Doo Jin (Department of Marine Production Management, Chonnam National University) ;
  • Yoon, Yang Ho (Department of Environmental Oceanography, Chonnam National University) ;
  • Han, Dong Yeob (Department of Marine Civil Engineering, Chonnam National University)
  • Received : 2014.03.04
  • Accepted : 2014.09.23
  • Published : 2014.10.30

Abstract

Asexual benthic polyp reproduction plays a major role in the jellyfish bloom. Recent studies found that temperature is the most important factor to regulate the budding rate of the polyps. We established a simple dynamic model to count the number of polyps depending on the variation of temperature with two data sets from different places. The population of polyps was counted through the budding rate and the number of budding times by Fibonacci sequence. It is assumed that the budding rate depends on the temperature only. The budding rate of the asexual reproduction shows very sensitive to the distribution of the seawater temperature. The model was tested to the temperature data of Ansan located in the west sea of Korea. The results indicate that this model can be useful to predict the blooms of Aurelia aurita polyps, which may have considerable influence on the bloom of medusa. The shape of temperature curve plays a key role in the predicting the bloom of Aurelia aurita polyps.

Keywords

References

  1. Lucas, C. H. (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiol. 451: 229-246. https://doi.org/10.1023/A:1011836326717
  2. Kim, J., S. Lee, J. Kim, and J. Lee (2010) Bio-gas production from Nemopilema Nomurai using anaerobic digestion. KSBB J. 25: 547-552.
  3. Bastian, T., D. Haberlin, J. E. Purcell, G. C. Hays, J. Davenport, R. McAllen, and T. K. Doyle (2011) Large scale sampling reveals the spatio-temporal distributions of the jellyfish Aurelia aurita and Cyanea capillata in the Irish Sea. Mar. Biol. 158: 2639-2652. https://doi.org/10.1007/s00227-011-1762-z
  4. Mutlu, E. (2001) Distribution and abundance of moon jellyfish (Aurelia aurita) and its zooplankton food in the Black sea. Mar. Biol. 138: 329-339. https://doi.org/10.1007/s002270000459
  5. Shoji, J., T. Kudoh, H. Takatsuji, O. Kawaguchi, and A. Kasai (2010) Distribution of moon jellyfish Aurelia aurita in relation to summer hypoxia in Hiroshima Bay, Seto Inland Sea. Estuar. Coast. Shelf Sci. 86: 485-490. https://doi.org/10.1016/j.ecss.2009.03.001
  6. Arai, M. N. (1997) A Functional Biology of Scyphozoa, Chapman and Hall, London.
  7. Kakinuma, Y. (1975) An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. Bull. Mar. Biol. Stat. Asamushi. 15: 101-113.
  8. Grondahl, F. (1988) A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and C. lamarckii in the Gullmar Fjord, western Sweden, 1982 to 1986. Mar. Biol. 97: 541-550. https://doi.org/10.1007/BF00391050
  9. Grondahl, F. (1988) Interactions between polyps of Aurelia aurita and planktonic larvae of scyphozoans: an experimental study. Mar. Ecol. Prog. Ser. 45: 87-93. https://doi.org/10.3354/meps045087
  10. Kim, G. (2007) Treatment of organic waste with microorganisms of mixed population, KSBB J. 22: 129-133.
  11. Thiel, H. (1962) Untersuchungen uber die Strobilisation von Aurelia aurita. Lam. an einer population der Kieler Forde. Kieler Meeresforsch. 18: 198-230.
  12. Hernroth, L. and F. Grondahl (1985) On the biology of Aurelia aurita (L.): 3. Predation by Coryphella verrucosa (Gastropoda, Opisthosobranchia), a major factor regulating the development of Aurelia aurita populations in the Gullmarfjord, western Sweden. Ophelia. 24: 37-45. https://doi.org/10.1080/00785236.1985.10426617
  13. Willcox, S., N. A. Moltschaniwskyj, and C. Crawford (2007) Asexual reproduction in scyphistomae of Aurelia sp.: Effects of temperature and salinity in an experimental study. J. Exp. Mar. Biol. Ecol. 353: 107-114. https://doi.org/10.1016/j.jembe.2007.09.006
  14. Purcell, J. E. (2005) Climate effects on formation of jellyfish and ctenophore blooms. J. Mar. Biol. Assoc. U.K. 85: 461-476. https://doi.org/10.1017/S0025315405011409
  15. Purcell, J. E. (2007) Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiate. Mar. Ecol. Prog. Ser. 348: 183-196. https://doi.org/10.3354/meps07056
  16. Liu, W., W. Lo, J. E. Purcell, and H. Chang (2009) Effects of temperature and light intensity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan. Hydrobiol. 616: 247-258. https://doi.org/10.1007/s10750-008-9597-4
  17. Xiping, Ma and J. E. Purcell (2005) Effects of temperature, salinity, and predators on mortality of and colonization by the invasive hydrozoan Moerisia lyonsi. Mar. Biol. 147: 215-224. https://doi.org/10.1007/s00227-004-1538-9
  18. Douady, S. and Y. Couder (1996) Phyllotaxis as a dynamical self organizing process part I: the spiral modes resulting from timeperiodic iterations. J. Theor. Biol. 178: 255-274. https://doi.org/10.1006/jtbi.1996.0024
  19. Olofsson, P. and A. A. Bertuch (2010) Modeling growth and telomere dynamics in Saccharomyces cerevisiae, J. Theor. Biol. 263: 353-359. https://doi.org/10.1016/j.jtbi.2009.12.004
  20. Sigler, L. (2002) Fibonacci's Liber Abaci, a translation into modern English of Leonardo Pisano's book of calculation, Springer- Verlag, New-York.
  21. Lo, W., C. Chung, and C. Shih (2004) Seasonal distribution of Copepods in Tapong bay, southwestern Taiwan, Zool. Stud. 43: 464-474.
  22. Yasuda, T. (2007) Giant and Moon Jellyfish: their identity and countermeasure (Japanese), Seizando-shoten Publishing Co. LTD., Shousantou, Tokyo.