DOI QR코드

DOI QR Code

Uptake of Fibroin Microspheres by 3T3 Cells

3T3 세포에 의한 피브로인 마이크로스피어의 흡수

  • Lee, Jin Sil (Department of Biological Engineering and Technology, Kangwon National University) ;
  • Go, Nam Kyung (Scripps Korea Antibody Institute) ;
  • Lee, Shin Young (Department of Biological Engineering and Technology, Kangwon National University) ;
  • Hur, Won (Department of Biological Engineering and Technology, Kangwon National University)
  • 이진실 (강원대학교 생물공학과) ;
  • 고남경 ((재)스크립스코리아항체연구원) ;
  • 이신영 (강원대학교 생물공학과) ;
  • 허원 (강원대학교 생물공학과)
  • Received : 2014.03.05
  • Accepted : 2014.06.24
  • Published : 2014.10.30

Abstract

Vehicle toxicity is one of the main obstacles for intracellular delivery of bioactive compounds. Silk fibroin is a natural polymer proven to have high biocompatibility since being used as suture material. In this report, fibroin microspheres were prepared without any chemical modification or cross-linking not to affect its biocompatibility. The microspheres were taken up by more than 90% of 3T3 cells. Cellular uptake continued after medium replenishment with a different-colored fluorescent microsphere, suggesting that simultaneous ingestion and exocytosis occurred. Cellular uptake of fibroin microspheres did not affect cell viability. Intracellular trafficking of the microspheres using lysosome-specific fluorescent dye revealed that fibroin microspheres were localized both in the cytoplasm and in the lysosome. Accordingly, fibroin microspheres can be a potential vehicle for intracytoplasmic delivery of large cargos, such as mixtures of proteins, nutrients or artificial organelles.

Keywords

References

  1. Acharya, C., S. K. Ghosh, and S. C. Kundu (2008) Silk fibroin protein from mulberry and non-mulberry silkworms: cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion. J. Mater. Sci. Mater. Med. 19: 2827-2836. https://doi.org/10.1007/s10856-008-3408-3
  2. Zhou, C. Z., F. Confalonieri, M. Jacquet, R. Perasso, Z. G. Li, and J. Janin (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 44: 119-122. https://doi.org/10.1002/prot.1078
  3. Galeotti, F., A. Andicsova, F. Bertini, and C. Botta (2013) A versatile click-grafting approach to surface modification of silk fibroin films. J. Mater. Sci. 48: 7004-7010. https://doi.org/10.1007/s10853-013-7509-0
  4. Minoura, N., M. Tsukada, and M. Nagura (1990) Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11: 430-434. https://doi.org/10.1016/0142-9612(90)90100-5
  5. Ak, F., Z. Oztoprak, I. Karakutuk, and O. Okay (2013) Macroporous silk fibroin cryogels. Biomacromolecules 14: 719-727. https://doi.org/10.1021/bm3018033
  6. Mauney, J. R., T. Nguyen, and K. Gillen (2007) Engineering adipose- like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 28: 5280-5290. https://doi.org/10.1016/j.biomaterials.2007.08.017
  7. Kundu, J., Y. I. Chung, Y. H. Kim, G. Tae, and S. C. Kundu (2010) Silk fibroin nanoparticles for cellular uptake and control release. Int. J. Pharm. 388: 242-250. https://doi.org/10.1016/j.ijpharm.2009.12.052
  8. Go, E. J., E. J. Kim, and W. Hur (2013) In vitro cellular uptake of fibroin microspheres and its dependency on the cell cycle stage. J. Microencapsul. 30: 124-131. https://doi.org/10.3109/02652048.2012.704951
  9. Mao, Z., X. Zhou, and C. Gao (2013) Influence of structure and properties of colloidal biomaterials on cellular uptake and cell functions. Biomater. Sci. 1: 896-911. https://doi.org/10.1039/c3bm00137g
  10. Conner, S. D. and S. L. Schmid (2003), Regulated portals of entry into the cell. Nature 422: 37-44. https://doi.org/10.1038/nature01451
  11. Khalil, I. A., K. Kogure, H. Akita, and H. Harashima (2006). Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58: 32-45. https://doi.org/10.1124/pr.58.1.8
  12. Bhabra, G., A. Sood, B. Fisher, L. Cartwright, M. Saunders, W. H. Evans, A. Surprenant, G. Lopez-Castejon, S. Mann, S. A. Davis, L. A. Hails, E. Ingham, P. Verkade, J. Lane, K. Heesom, R. Newson, and C. P. Case (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nat. Nanotechnol. 4: 876-883. https://doi.org/10.1038/nnano.2009.313
  13. Lewinski, N., V. Colvin, and R. Drezek (2008) Cytotoxicity of nanoparticles. Small 4: 26-49. https://doi.org/10.1002/smll.200700595
  14. Kim, E. J., S. Y. Lee, and W. Hur (2011) Preparation of core-shell microcapsules using nanodispersed fibroin. J. Appl. Polym. Sci. 121: 3460-3465. https://doi.org/10.1002/app.33997
  15. Hillaireau, H. and P. Couvreur (2009) Nanocarriers' entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66: 2873-2896. https://doi.org/10.1007/s00018-009-0053-z
  16. Thorek, D. L. J. and A. Tsourkas (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29: 3583-3590. https://doi.org/10.1016/j.biomaterials.2008.05.015
  17. Zhang, S., J. Li, and G. Lykotrafitis (2009) Size-dependent endocytosis of nanoparticles. Adv. Mater. 21: 419-424. https://doi.org/10.1002/adma.200801393
  18. Chaudhuri, A., G. Battaglia, and R. Golestanian (2011) The effect of interactions on the cellular uptake of nanoparticles. Phys. Biol. 8: 046002. https://doi.org/10.1088/1478-3975/8/4/046002
  19. Yi, X., X. Shi, and H. Gao (2011) Cellular uptake of elastic nanoparticles. Phys. Rev. Lett. 107: 098101. https://doi.org/10.1103/PhysRevLett.107.098101
  20. Muoz Javier, A. and O. Kreft (2008) Uptake of colloidal polyelectrolyte- coated particles and polyelectrolyte multilayer capsules by living cells. Adv. Mater. 20: 4281-4287. https://doi.org/10.1002/adma.200703190
  21. Yan, Y., A. P. R. Johnston, and S. J. Dodds (2010) Uptake and intracellular fate of disulfide-bonded polymer hydrogel capsules for doxorubicin delivery to colorectal cancer cells. ACS nano 4: 2928-2936. https://doi.org/10.1021/nn100173h
  22. De Koker, S., B. G. De Geest, and S. K. Singh (2009) Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated antigens. Angew. Chem. Int. Ed. 48: 8485-8489. https://doi.org/10.1002/anie.200903769
  23. De Geest, B. G., R. E. Vandenbroucke, and A. M. Guenther (2006) Intracellularly degradable polyelectrolyte microcapsules. Adv. Mater. 18: 1005-1009. https://doi.org/10.1002/adma.200502128
  24. Nam, H. Y., S. M. Kwon, and H. Chung (2009) Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. Control Release 135: 259-267. https://doi.org/10.1016/j.jconrel.2009.01.018
  25. Cartiera, M. S., K. M. Johnson, V. Rajendran, M. J. Caplan, and W. M. Saltzman (2009) The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 30: 2790-2798. https://doi.org/10.1016/j.biomaterials.2009.01.057