DOI QR코드

DOI QR Code

$TiO_2$ 농도 및 여기광에 따른 광촉매 반응이 Streptococcus mutans의 생장에 미치는 영향

Influence of $TiO_2$ Concentrations and Irradiation Lights on the Photocatalytic Reaction for Inhibiting Growth of Streptococcus mutans

  • 강시묵 (연세대학교 치과대학 예방치과학교실) ;
  • 이해나 (연세대학교 치과대학 예방치과학교실) ;
  • 김희은 (가천대학교 보건과학대학 치위생학과) ;
  • 김백일 (연세대학교 치과대학 예방치과학교실)
  • Kang, Si-Mook (Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry) ;
  • Lee, Hae-Na (Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry) ;
  • Kim, Hee-Eun (Department of Dental Hygiene, College of Health Science, Gachon University) ;
  • Kim, Baek-Il (Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry)
  • 투고 : 2014.06.21
  • 심사 : 2014.08.03
  • 발행 : 2014.09.30

초록

본 연구는 광촉매 반응을 이용하여 치아우식증의 주요 원인균인 S. mutans를 조절하기 위한 새로운 방법을 제안하고자 기존 이산화 티타늄 광촉매에 주로 사용되었던 자외선영역의 광원과 현재 임상현장에서 활용되고 있는 405 nm의 가시광선 빛에 의한 광촉매 반응을 유도하여 항균효과를 비교하였다. 우선 최적의 이산화 티타늄 농도를 탐색한 결과 254 nm 또는 405 nm 빛 조사시 0.1 mg/ml의 농도에서 S. mutans에 대한 항균력이 각각 93%와 24%로 가장 높게 나타났다. 또한 광조사 시간과 S. mutans에 대한 항균력은 정비례 관계를 보였으며, 254 nm의 빛은 20분 이상, 그리고 405 nm의 빛은 40분 이상 조사할 경우 $10^4CFU/ml$ 정도의 생균이 완전히 사멸되는 결과를 확인하였다. 따라서 이산화티타늄의 광촉매 반응은 인체에 무해한 405 nm의 가시광선으로 유도될 수 있으며, 향후 항균력을 보다 증가시킬 수 있는 방법을 고안 한다면 임상현장에서 효과적으로 구강 내 S. mutans를 억제하는 데 활용이 가능할 것으로 예상된다.

The aim of this study was to evaluate influences of titanium dioxide ($TiO_2$) concentrations and irradiation times on growth of Streptococcus mutans when irradiated by visible light (405 nm wavelength) and by ultraviolet light (254 nm wavelength). To find the optimal antibacterial concentration of $TiO_2$, 0.01, 0.1, 1.0, and 10.0 mg/ml $TiO_2$ suspension was prepared with sterilized distilled water. S. mutans cultured media was added to $TiO_2$ solution to set the final cell count to $10^4CFU/ml$. The photocatalytic reaction was induced by irradiating 254 nm and 405 nm lights for 10 minutes. To compare the bactericidal activities according to irradiation times, all photocatalytic reaction was carried out with 0.1 mg/ml $TiO_2$ for 0, 10, 20, 30, and 40 minutes with both lights. After the photocatalytic reaction, $100{\mu}m$ of the reaction mixture was immediately plated on brain heart infusion agar. These plates were placed at 5% $CO_2$, $37^{\circ}C$, for 24 hours and the bacterial colonies were counted. All experiments were performed in quintuplicate. One-way ANOVA was used to determine whether there were any significant differences between the $TiO_2$ concentrations or the irradiation times. The most effective concentration of $TiO_2$ for its photocatalytic bactericidal effect on S. mutans was 0.1 mg/ml when irradiated with 254 nm and 405 nm lights. The longer the irradiation time, the bigger the bactericidal effect for both wavelengths. Over 99% of bacteria in the inoculum were killed after irradiation with 254 nm for 20 minutes and with 405 nm for 40 minutes. In conclusion, a photocatalytic reaction of $TiO_2$ induced by visible light of 405 nm constitutes the bactericidal effect on S. mutans.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Loesche WJ: Microbiology of dental decay and periodontal disease. In: Baron S. Medical microbiology. 4th ed. University of Texas Medical Branch at Galveston, Galveston, 1996.
  2. Jain Y: A comparison of the efficacy of powered and manual toothbrushes in controlling plaque and gingivitis: a clinical study. Clin Cosmet Invest Dent 5: 3-9, 2013.
  3. Jarvinen H, Tenovuo J, Huovinen P: In vitro susceptibility of Streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother 37: 1158- 1159, 1993. https://doi.org/10.1128/AAC.37.5.1158
  4. Flotra L, Gjermo P, Rolla G, Waerhaug J: Side effects of chlorhexidine mouth washes. Scand J Dent Res 79: 119-125, 1971.
  5. Koh EH, Cho JH: A comparative study of physical properties of $TiO_2$ thin films according to a coating method on orthodontic wire sand brackets. Korean J Orthod 36: 451-464, 2006.
  6. Mills A, Hunte SL: An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108: 1-35, 1997. https://doi.org/10.1016/S1010-6030(97)00118-4
  7. Fujishima A, Rao TN, Tryk DA: Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1: 1-21, 2000. https://doi.org/10.1016/S1389-5567(00)00002-2
  8. Tark C: Photocatalytic antibacterial effect of $TiO_{2}$ film of titanium alloys on Streptococcus mutans. Unpublished master's thesis, Yonsei University, Seoul, 2007.
  9. Choi J: Photocatalytic antibacterial effect of $TiO_2$ film of TiAg on cariogenic bacterias. Unpublished doctoral dissertation, Yonsei University, Seoul, 2005.
  10. Hashimoto K, Irie H, Fujishima A: $TiO_2$ photocatalysis: a historical overview and future prospects. J Appl Phys 44: 8269-8285, 2005. https://doi.org/10.1143/JJAP.44.8269
  11. Park JH, Kwon SY: Solar photochemical degradation and toxicity reduction of Trichloroethlylene (TCE). Clean Technol 12: 244-249, 2006.
  12. Saito T, Iwase T, Horie J, Morioka T: Mode of photocatalytic bactericidal action of powdered semiconductor $TiO_{2}$ on mutans streptococci. J Photochem Photobiol B Biol 14: 369-379, 1992. https://doi.org/10.1016/1011-1344(92)85115-B
  13. Mackenzie K, Muller HJ: Mutation effects of ultraviolet light in Drosophila. Proc R Soc Lond B Biol Sci 129: 491-517, 1940. https://doi.org/10.1098/rspb.1940.0049
  14. Narayanan DL, Saladi RN, Fox JL: Ultraviolet radiation and skin cancer. Int J Dermatol 49: 978-986, 2010. https://doi.org/10.1111/j.1365-4632.2010.04474.x
  15. Jeong W: Preparation of visible-working photo-catalyst and evaluation of anti-bacterial effect. Unpublished dotoral dissertation. Chosun University, Gwangju, 2007.
  16. Lee YH, Park HW, Lee JH, Seo HW, Lee SY: The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit. Int J Oral Sci 4: 196-201, 2012.
  17. Kim BI: QLF Concept and Clinical Implementation. J Korean Dent Assoc 49: 443-450, 2011.
  18. Lee ES, Kang SM, Ko HY, Kwon HK, Kim BI: Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D). J Dent 41: 1264-1270, 2013. https://doi.org/10.1016/j.jdent.2013.08.021
  19. Lee SY, Chang BS, Um HS, Ma DS: Comparison of photodynamic bactericidal effects of erythrosine against Streptococcus mutans and Streptococcus sobrinus by different wavelength of LED lights. J Korean Acad Oral Health 36: 20-25, 2012.
  20. Chen J, Keltner L, Christophersen J, et al.: New technology for deep light distribution in tissue for phototherapy. Cancer J 8: 154-163, 2002. https://doi.org/10.1097/00130404-200203000-00009
  21. Salinas JLA, Aguilar JRP, Hernandez SAM, Cruz JS: Bactericidal activity of $TiO_2$ on cells of Pseudomonas aeruginosa ATCC 27853. Int J Photoenergy 954914: 1-7, 2013.
  22. Gao Y, Liu Y, Zhou L, et al.: The effects of different wavelength UV photofunctionalization on micro-arc oxidized titanium. PLoS One 8: e68086, 2013. https://doi.org/10.1371/journal.pone.0068086