References
- Choi S, Lee C, Hwang Y, Kinoshita H, Nihira T. 2004. Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch. Microbiol. 181: 294-298. https://doi.org/10.1007/s00203-004-0654-8
- Falk R, Domb AJ, Polacheck I. 1999. A novel injectable water-soluble amphotericin B-arabinogalactan conjugate. Antimicrob. Agents Chemother. 43: 1975-1981.
- Gupte M, Kulkarni P, Ganguli BN. 2002. Antifungal antibiotics. Appl. Microbiol. Biotechnol. 58: 46-57. https://doi.org/10.1007/s002530100822
- Gust B, Challis GL, Fowler K, Kieser T, Chater KF. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100: 1541-1546. https://doi.org/10.1073/pnas.0337542100
- Hopwood DA. 1997. Genetic contributions to understanding polyketide synthases. Chem. Rev. 97: 2465-2497. https://doi.org/10.1021/cr960034i
- Jeon HJ, Seo J, Lee MJ, Han K, Kim ES. 2011. Analysis and functional expression of NPP pathway-specific regulatory genes in Pseudonocardia autotrophica. J. Ind. Microbiol. Biotechnol. 38: 573-579. https://doi.org/10.1007/s10295-011-0939-2
- Kang SH, Huang J, Lee HN, Hur YA, Cohen SN, Kim ES. 2007. Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J. Bacteriol. 189: 4315-4319. https://doi.org/10.1128/JB.01789-06
- Kim BG, Lee MJ, Seo J, Hwang YB, Lee MY, Han K, et al. 2009. Identification of functionally clustered nystatin-like biosynthetic genes in a rare actinomycetes, Pseudonocardia autotrophica. J. Ind. Microbiol. Biotechnol. 36: 1425-1434. https://doi.org/10.1007/s10295-009-0629-5
- Kong D, Lee MJ, Lin S, Kim ES. 2013. Biosynthesis and pathway engineering of antifungal polyene macrolides in actinomycetes. J. Ind. Microbiol. Biotechnol. 40: 529-543. https://doi.org/10.1007/s10295-013-1258-6
- Lee MJ, Kong D, Han K, Sherman DH, Bai L, Deng Z, et al. 2012. Structural analysis and biosynthetic engineering of a solubility-improved and less-hemolytic nystatin-like polyene in Pseudonocardia autotrophica. Appl. Microbiol. Biotechnol. 95: 157-168. https://doi.org/10.1007/s00253-012-3955-x
- Noh JH, Kim SH, Lee HN, Lee SY, Kim ES. 2010. Isolation and genetic manipulation of the antibiotic down-regulatory gene, wblA ortholog for doxorubicin-producing Streptomyces strain improvement. Appl. Microbiol. Biotechnol. 86: 1145-1153. https://doi.org/10.1007/s00253-009-2391-z
- Nosanchuk JD. 2006. Current status and future of antifungal therapy for systemic mycoses. Recent Patents on Anti-Infective Drug Discovery 1: 75-84. https://doi.org/10.2174/157489106775244109
- Tevyashova AN, Olsufyeva EN, Solovieva SE, Printsevskaya SS, Reznikova MI, Trenin AS, et al. 2013. Structureantifungal activity relationships of polyene antibiotics of the amphotericin B group. Antimicrob. Agents Chemother. 57: 3815-3822. https://doi.org/10.1128/AAC.00270-13
- Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S. 2008. Amphotericin B formulations and drug targeting. J. Pharm. Sci. 97: 2405-2425. https://doi.org/10.1002/jps.21179
- Zotchev SB. 2003. Polyene macrolide antibiotics and their applications in human therapy. Curr. Med. Chem. 10: 211-223. https://doi.org/10.2174/0929867033368448
Cited by
- Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes vol.43, pp.2, 2014, https://doi.org/10.1007/s10295-015-1682-x
- Improved recovery and biological activities of an engineered polyene NPP analogue in Pseudonocardia autotrophica vol.44, pp.9, 2014, https://doi.org/10.1007/s10295-017-1954-8
- Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing vol.57, pp.1, 2017, https://doi.org/10.1002/jobm.201600358
- Draft Genome Sequence of Deep-Sea Alteromonas sp. Strain V450 Isolated from the Marine Sponge Leiodermatium sp. vol.5, pp.5, 2014, https://doi.org/10.1128/genomea.01508-16
- Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era vol.35, pp.6, 2014, https://doi.org/10.1039/c8np00012c
- Regulation of antibiotic biosynthesis in actinomycetes: Perspectives and challenges vol.3, pp.4, 2018, https://doi.org/10.1016/j.synbio.2018.10.005
- Pseudonocardia strain improvement for stimulation of the di-sugar heptaene Nystatin-like Pseudonocardia polyene B1 biosynthesis vol.46, pp.5, 2014, https://doi.org/10.1007/s10295-019-02149-7
- The regulatory cascades of antibiotic production in Streptomyces vol.36, pp.1, 2014, https://doi.org/10.1007/s11274-019-2789-4
- The Application of Regulatory Cascades in Streptomyces : Yield Enhancement and Metabolite Mining vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.00406
- WblA, a global regulator of antibiotic biosynthesis in Streptomyces vol.48, pp.3, 2014, https://doi.org/10.1093/jimb/kuab007