References
- Bahn YS, Sundstrom P. 2001. CAP1, an adenylate cyclaseassociated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J. Bacteriol. 183: 3211-3223. https://doi.org/10.1128/JB.183.10.3211-3223.2001
- Bertram G, Swoboda RK, Gooday GW, Gow NAR, Brown AJP. 1996. Structure and regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase. Yeast 12: 115-127. https://doi.org/10.1002/(SICI)1097-0061(199602)12:2<115::AID-YEA889>3.0.CO;2-E
- Biswas K, Morschhauser J. 2005. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol. Microbiol. 56: 649-669. https://doi.org/10.1111/j.1365-2958.2005.04576.x
- Calderone RA, Fonzi WA. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9: 327-335. https://doi.org/10.1016/S0966-842X(01)02094-7
- Chen H, Fujita M, Feng QH, Clardy J, Fink GR. 2004. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl. Acad. Sci. USA 101: 5048-5052. https://doi.org/10.1073/pnas.0401416101
- Chen JY, Zhou S, Wang Q, Chen X, Pan T, Liu HP. 2000. Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in Candida albicans. Mol. Cell. Biol. 20: 8696-8708. https://doi.org/10.1128/MCB.20.23.8696-8708.2000
- Chung SC, Lee JY, Oh KB. 2005. cDNA cloning of farnesoic acid-induced genes in Candida albicans by differential display analysis. J. Microbiol. Biotechnol. 15: 1146-1151.
- Chung SC, Kim TI, Ahn CH, Shin J, Oh KB. 2010. Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid. FEBS Lett. 584: 4639-4645. https://doi.org/10.1016/j.febslet.2010.10.026
- Dabas N, Schneider S, Morschhauser J. 2009. Mutational analysis of the Candida albicans ammonium permease Mep2p reveals residues required for ammonium transport and signaling. Eukaryot. Cell 8: 147-160. https://doi.org/10.1128/EC.00229-08
- Feng QH, Summers E, Guo B, Fink G. 1999. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J. Bacteriol. 181: 6339-6346.
- Fonzi WA, I rwin MY. 1993. Isogenic s train construction and gene-mapping in Candida albicans. Genetics 134: 717-728.
- Garcera A, Casas C, Herrero E. 2010. Expression of Candida albicans glutathione transferases is induced inside phagocytes and upon diverse environmental stresses. FEMS Yeast Res. 10: 422-431. https://doi.org/10.1111/j.1567-1364.2010.00613.x
- Gietz RD, Schiestl RH, Willems AR, Woods RA. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355-360. https://doi.org/10.1002/yea.320110408
- Hall RA, Cottier F, Muhlschlegel FA. 2009. Molecular networks in the fungal pathogen Candida albicans. Adv. Appl. Microbiol. 67: 191-212. https://doi.org/10.1016/S0065-2164(08)01006-X
- Hoffman CS, Winston F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-272. https://doi.org/10.1016/0378-1119(87)90131-4
- Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, et al. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67: 2982-2992. https://doi.org/10.1128/AEM.67.7.2982-2992.2001
- Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A. 1999. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274: 27002-27009. https://doi.org/10.1074/jbc.274.38.27002
- Kadosh D, Johnson AD. 2005. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol. Biol. Cell 16: 2903-2912. https://doi.org/10.1091/mbc.E05-01-0073
- Lee KL, Campbell CC, Buckley HR. 1975. An amino acid liquid synthetic medium for development of mycelial and yeast forms of Candida albicans. Med. Mycol. 13: 148-153. https://doi.org/10.1080/00362177585190271
- Liu HP, Kohler J, Fink GR. 1994. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266: 1723-1726. https://doi.org/10.1126/science.7992058
- Lorenz MC, Heitman J. 1998. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 17: 1236-1247. https://doi.org/10.1093/emboj/17.5.1236
- McGoldrick S, O'Sullivan SM, Sheehan D. 2005. Glutathione transferase-like proteins encoded in genomes of yeasts and fungi: insights into evolution of a multifunctional protein superfamily. FEMS Microbiol. Lett. 242: 1-12. https://doi.org/10.1016/j.femsle.2004.10.033
- Miwa T, Takagi Y, Shinozaki M, Yun CW, Schell WA, Perfect JR, et al. 2004. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot. Cell 3: 919-931 https://doi.org/10.1128/EC.3.4.919-931.2004
- Oh KB, Miyazawa H, Naito T, Matsuoka H. 2001. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc. Natl. Acad. Sci. USA 98: 4664-4668. https://doi.org/10.1073/pnas.071404698
- Sanchez-Martinez C, Perez-Martin J. 2002. Gpa2, a G-protein alpha subunit required for hyphal development in Candida albicans. Eukaryot. Cell 1: 865-874. https://doi.org/10.1128/EC.1.6.865-874.2002
- Sanglard D, Ischer F, Monod M, Bille J. 1996. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob. Agents Chemother. 40: 2300-2305.
- Sudbery PE. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9: 737-748. https://doi.org/10.1038/nrmicro2636
- White TC, Andrews LE, Maltby D, Agabian N. 1995. The "universal" leucine codon CTG in the secreted aspartyl proteinase 1 (SAP1) gene of Candida albicans encodes a serine in vivo. J. Bacteriol. 177: 2953-2955. https://doi.org/10.1128/jb.177.10.2953-2955.1995
Cited by
- A farnesoic acid-responsive transcription factor, Hot1, regulates yeast-hypha morphogenesis inCandida albicans vol.591, pp.9, 2014, https://doi.org/10.1002/1873-3468.12636