DOI QR코드

DOI QR Code

GST2 is Required for Nitrogen Starvation-Induced Filamentous Growth in Candida albicans

  • Lee, So-Hyoung (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Chung, Soon-Chun (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Shin, Jongheon (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Oh, Ki-Bong (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2014.05.08
  • Accepted : 2014.06.12
  • Published : 2014.09.28

Abstract

Candida albicans, the major human fungal pathogen, undergoes morphological transition from the budding yeast form to filamentous growth in response to nitrogen starvation. In this study, we identified a new function of GST2, whose expression was required for filamentous growth of C. albicans under nitrogen-limiting conditions. The Gst2p showed Gst activity and required response to oxidative stress. The ${\Delta}gst2$ mutant displayed predominantly yeast phase growth in low ammonium media. Such morphological defect of ${\Delta}gst2$ mutants was not rescued by overexpression of Mep2p, Cph1p, or Efg1p, but was rescued by either overexpression of a hyperactive $RAS1^{G13V}$ allele or through exogenous addition of cyclic AMP. In addition, the ${\Delta}gst2$ mutants had lower levels of RAS1 transcripts than wild-type cells under conditions of nitrogen starvation. These results were consistent with the Ras1-cAMP pathway as a possible downstream target of Gst2p. These findings suggest that Gst2p is a significant component of nitrogen starvation-induced filamentation in C. albicans.

Keywords

References

  1. Bahn YS, Sundstrom P. 2001. CAP1, an adenylate cyclaseassociated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J. Bacteriol. 183: 3211-3223. https://doi.org/10.1128/JB.183.10.3211-3223.2001
  2. Bertram G, Swoboda RK, Gooday GW, Gow NAR, Brown AJP. 1996. Structure and regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase. Yeast 12: 115-127. https://doi.org/10.1002/(SICI)1097-0061(199602)12:2<115::AID-YEA889>3.0.CO;2-E
  3. Biswas K, Morschhauser J. 2005. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol. Microbiol. 56: 649-669. https://doi.org/10.1111/j.1365-2958.2005.04576.x
  4. Calderone RA, Fonzi WA. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9: 327-335. https://doi.org/10.1016/S0966-842X(01)02094-7
  5. Chen H, Fujita M, Feng QH, Clardy J, Fink GR. 2004. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl. Acad. Sci. USA 101: 5048-5052. https://doi.org/10.1073/pnas.0401416101
  6. Chen JY, Zhou S, Wang Q, Chen X, Pan T, Liu HP. 2000. Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in Candida albicans. Mol. Cell. Biol. 20: 8696-8708. https://doi.org/10.1128/MCB.20.23.8696-8708.2000
  7. Chung SC, Lee JY, Oh KB. 2005. cDNA cloning of farnesoic acid-induced genes in Candida albicans by differential display analysis. J. Microbiol. Biotechnol. 15: 1146-1151.
  8. Chung SC, Kim TI, Ahn CH, Shin J, Oh KB. 2010. Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid. FEBS Lett. 584: 4639-4645. https://doi.org/10.1016/j.febslet.2010.10.026
  9. Dabas N, Schneider S, Morschhauser J. 2009. Mutational analysis of the Candida albicans ammonium permease Mep2p reveals residues required for ammonium transport and signaling. Eukaryot. Cell 8: 147-160. https://doi.org/10.1128/EC.00229-08
  10. Feng QH, Summers E, Guo B, Fink G. 1999. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J. Bacteriol. 181: 6339-6346.
  11. Fonzi WA, I rwin MY. 1993. Isogenic s train construction and gene-mapping in Candida albicans. Genetics 134: 717-728.
  12. Garcera A, Casas C, Herrero E. 2010. Expression of Candida albicans glutathione transferases is induced inside phagocytes and upon diverse environmental stresses. FEMS Yeast Res. 10: 422-431. https://doi.org/10.1111/j.1567-1364.2010.00613.x
  13. Gietz RD, Schiestl RH, Willems AR, Woods RA. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355-360. https://doi.org/10.1002/yea.320110408
  14. Hall RA, Cottier F, Muhlschlegel FA. 2009. Molecular networks in the fungal pathogen Candida albicans. Adv. Appl. Microbiol. 67: 191-212. https://doi.org/10.1016/S0065-2164(08)01006-X
  15. Hoffman CS, Winston F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-272. https://doi.org/10.1016/0378-1119(87)90131-4
  16. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, et al. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67: 2982-2992. https://doi.org/10.1128/AEM.67.7.2982-2992.2001
  17. Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A. 1999. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274: 27002-27009. https://doi.org/10.1074/jbc.274.38.27002
  18. Kadosh D, Johnson AD. 2005. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol. Biol. Cell 16: 2903-2912. https://doi.org/10.1091/mbc.E05-01-0073
  19. Lee KL, Campbell CC, Buckley HR. 1975. An amino acid liquid synthetic medium for development of mycelial and yeast forms of Candida albicans. Med. Mycol. 13: 148-153. https://doi.org/10.1080/00362177585190271
  20. Liu HP, Kohler J, Fink GR. 1994. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266: 1723-1726. https://doi.org/10.1126/science.7992058
  21. Lorenz MC, Heitman J. 1998. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 17: 1236-1247. https://doi.org/10.1093/emboj/17.5.1236
  22. McGoldrick S, O'Sullivan SM, Sheehan D. 2005. Glutathione transferase-like proteins encoded in genomes of yeasts and fungi: insights into evolution of a multifunctional protein superfamily. FEMS Microbiol. Lett. 242: 1-12. https://doi.org/10.1016/j.femsle.2004.10.033
  23. Miwa T, Takagi Y, Shinozaki M, Yun CW, Schell WA, Perfect JR, et al. 2004. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot. Cell 3: 919-931 https://doi.org/10.1128/EC.3.4.919-931.2004
  24. Oh KB, Miyazawa H, Naito T, Matsuoka H. 2001. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc. Natl. Acad. Sci. USA 98: 4664-4668. https://doi.org/10.1073/pnas.071404698
  25. Sanchez-Martinez C, Perez-Martin J. 2002. Gpa2, a G-protein alpha subunit required for hyphal development in Candida albicans. Eukaryot. Cell 1: 865-874. https://doi.org/10.1128/EC.1.6.865-874.2002
  26. Sanglard D, Ischer F, Monod M, Bille J. 1996. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob. Agents Chemother. 40: 2300-2305.
  27. Sudbery PE. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9: 737-748. https://doi.org/10.1038/nrmicro2636
  28. White TC, Andrews LE, Maltby D, Agabian N. 1995. The "universal" leucine codon CTG in the secreted aspartyl proteinase 1 (SAP1) gene of Candida albicans encodes a serine in vivo. J. Bacteriol. 177: 2953-2955. https://doi.org/10.1128/jb.177.10.2953-2955.1995

Cited by

  1. A farnesoic acid-responsive transcription factor, Hot1, regulates yeast-hypha morphogenesis inCandida albicans vol.591, pp.9, 2014, https://doi.org/10.1002/1873-3468.12636