References
- Adams JJ, Webb BA, Spencer HL, Smith SP. 2005. Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. Biochemistry 44: 2173-2182. https://doi.org/10.1021/bi048039u
- Bayer EA, Shoham Y, Lamed R. 2006. Cellulose-decomposing bacteria and their enzyme systems, pp. 578-617. Prokaryotes. Springer Publisher, Ins.
- Beguin P, Alzari PM. 1998. The cellulosome of Clostridium thermocellum. Biochem. Soc. Trans. 26: 178-185. https://doi.org/10.1042/bst0260178
- Belaich JP, Tardif C, Belaich A, Gaudin C. 1997. The cellulolytic system of Clostridium cellulolyticum. J. Biotechnol. 57: 3-14. https://doi.org/10.1016/S0168-1656(97)00085-0
- Caspi J, Barak Y, Haimovitz R, Irwin D, Lamed R, Wilson DB, Bayer EA. 2009. Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl. Environ. Microbiol. 75: 7335-7342. https://doi.org/10.1128/AEM.01241-09
- Caspi J, Irwin D, Lamed R, Li Y, Fierobe H-P, Wilson DB, Bayer EA. 2008. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: Comparative impact on cellulose-degrading activity. J. Biotechnol. 135: 351-357. https://doi.org/10.1016/j.jbiotec.2008.05.003
- Caspi J, Irwin D, Lamed R, Shoham Y, Fierobe HP, Wilson DB, Bayer EA. 2006. Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocatal. Biotransform. 24: 3-12. https://doi.org/10.1080/10242420600598046
- Chauvaux S, Beguin P, Aubert JP, Bhat KM, Gow LA, Wood TM, Bairoch A. 1990. Calcium-binding affinity and calciumenhanced activity of Clostridium thermocellum endoglucanase D. Biochem. J. 265: 261-265. https://doi.org/10.1042/bj2650261
- Chiruvolu V, Cregg JM, Meagher MM. 1997. Recombinant protein production in an alcohol oxidase-defective strain of Pichia pastoris in fedbatch fermentations. Enzyme Microb. Technol. 21: 277-283. https://doi.org/10.1016/S0141-0229(97)00042-2
- Choi SK, Ljungdahl LG. 1996. Structural role of calcium for the organization of the cellulosome of Clostridium thermocellum. Biochemistry 35: 4906-4910. https://doi.org/10.1021/bi9524631
- Desvaux M. 2005. The cellulosome of Clostridium cellulolyticum. Enzyme Microb. Technol. 37: 373-385. https://doi.org/10.1016/j.enzmictec.2004.04.025
- Desvaux M. 2005. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol. Rev. 29: 741-764. https://doi.org/10.1016/j.femsre.2004.11.003
- Doi RH, Park JS, Liu CC, Malburg LM, Tamaru Y, Ichiishi A, Ibrahim A. 1998. Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans. Extremophiles 2: 53-60. https://doi.org/10.1007/s007920050042
- Doi RH, Tamaru Y. 2001. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem. Rec. 1: 24-32. https://doi.org/10.1002/1528-0691(2001)1:1<24::AID-TCR5>3.0.CO;2-W
- Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, et al. 2002. Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J. Biol. Chem. 277: 49621-49630. https://doi.org/10.1074/jbc.M207672200
- Fierobe HP, Pages S, Belaich A, Champ S, Lexa D, Belaich JP. 1999. Cellulosome from Clostridium cellulolyticum: molecular study of the dockerin/cohesin interaction. Biochemistry 38: 12822-12832. https://doi.org/10.1021/bi9911740
- Gal L, Pages S, Gaudin C, Belaich A, ReverbelLeroy C, Tardif C, Belaich JP. 1997. Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl. Environ. Microbiol. 63: 903-909.
- Ghose TK. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
- Goossens KV, Stassen C, Stals I, Donohue DS, Devreese B, De Greve H, Willaert RG. 2011. The N-terminal domain of the Flo1 flocculation protein from Saccharomyces cerevisiae binds specifically to mannose carbohydrates. Eukaryot. Cell 10: 110-117. https://doi.org/10.1128/EC.00185-10
- Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. 2011. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb. Cell Fact. 10: 89. https://doi.org/10.1186/1475-2859-10-89
- Henrissat B, Driguez H, Viet C, Schulein M. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat. Biotech. 3: 722-726. https://doi.org/10.1038/nbt0885-722
- Hirayama K, Watanabe H, Tokuda G, Kitamoto K, Arioka M. 2010. Purification and characterization of termite endogenous beta-1,4-endoglucanases produced in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 74: 1680-1686. https://doi.org/10.1271/bbb.100296
- Ito J, Fujita Y, Ueda M, Fukuda H, Kondo A. 2004. Improvement of cellulose-degrading ability of a yeast strain displaying Trichoderma reesei endoglucanase II by recombination of cellulose-binding domains. Biotechnol. Prog. 20: 688-691. https://doi.org/10.1021/bp034332u
- Kakiuchi M, Isui A, Suzuki K, Fujino T, Fujino E, Kimura T, et al. 1998. Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J. Bacteriol. 180: 4303-4308.
- Karpol A, Kantorovich L, Demishtein A, Barak Y, Morag E, Lamed R, Bayer EA. 2009. Engineering a reversible, highaffinity system for efficient protein purification based on the cohesin-dockerin interaction. J. Mol. Recognit. 22: 91-98. https://doi.org/10.1002/jmr.926
- Kataeva IA, Uversky VN, Ljungdahl LG. 2003. Calcium and domain interactions contribute to the thermostability of domains of the multimodular cellobiohydrolase, CbhA, a subunit of the Clostridium thermocellum cellulosome. Biochem. J. 372: 151-161. https://doi.org/10.1042/BJ20021621
- Kim AY, Attwood GT, Holt SM, White BA, Blaschek HP. 1994. Heterologous expression of endo-beta-1,4-D-glucanase from Clostridium cellulovorans in Clostridium acetobutylicum ATCC 824 following transformation of the EngB gene. Appl. Environ. Microbiol. 60: 337-340.
- Kim S, Baek SH, Lee K, Hahn JS. 2013. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase. Microb. Cell Fact. 12: 14. https://doi.org/10.1186/1475-2859-12-14
- Lilly M, Fierobe HP, van Zyl WH, Volschenk H. 2009. Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res. 9: 1236-1249. https://doi.org/10.1111/j.1567-1364.2009.00564.x
- Lytle BL, Volkman BF, Westler WM, Wu JH. 2000. Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Arch. Biochem. Biophys 379: 237-244. https://doi.org/10.1006/abbi.2000.1882
- Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A. 2002. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl. Environ. Microbiol. 68: 4517-4522. https://doi.org/10.1128/AEM.68.9.4517-4522.2002
- Mingardon F, Chanal A, Lopez-Contreras AM, Dray C, Bayer EA, Fierobe HP. 2007. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl. Environ. Microbiol. 73: 3822-3832. https://doi.org/10.1128/AEM.00398-07
- Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe HP. 2007. Exploration of new geometries in cellulosome-like chimeras. Appl. Environ. Microbiol. 73: 7138-7149. https://doi.org/10.1128/AEM.01306-07
- Mingardon F, Chanal A, Tardif C, Fierobe HP. 2011. The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 77: 2831-2838. https://doi.org/10.1128/AEM.03012-10
- Mingardon F, Perret S, Belaich A, Tardif C, Belaich JP, Fierobe HP. 2005. Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71: 1215-1222. https://doi.org/10.1128/AEM.71.3.1215-1222.2005
- Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, et al. 2010. Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio. 1: e00285-10.
- Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, et al. 2010. Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes. Appl. Environ. Microbiol. 76: 3787-3796. https://doi.org/10.1128/AEM.00266-10
- Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, et al. 2001. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183: 4823-4838. https://doi.org/10.1128/JB.183.16.4823-4838.2001
- Ou JS, Ge H, Cao YC. 2013. Thermomonospora fusca endoglucanase E4 incorporate into Clostridium acetobutylicum minicellulosomes by in vitro assemble. J. South China Univ. Technol. 41: 90-94.
- Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttila M. 2003. The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J. Biol. Chem. 278: 45011-45020. https://doi.org/10.1074/jbc.M302372200
- Perret S, Casalot L, Fierobe HP, Tardif C, Sabathe F, Belaich JP, Belaich A. 2004. Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J. Bacteriol. 186: 253-257. https://doi.org/10.1128/JB.186.1.253-257.2004
- Ren Z, Ward TE, Logan BE, Regan JM. 2007. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J. Appl. Microbiol. 103: 2258-2266. https://doi.org/10.1111/j.1365-2672.2007.03477.x
- Sabathe F, Belaich A, Soucaille P. 2002. Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol. Lett. 217: 15-22. https://doi.org/10.1111/j.1574-6968.2002.tb11450.x
- Sabathe F, Soucaille P. 2003. Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. J. Bacteriol. 185: 1092-1096. https://doi.org/10.1128/JB.185.3.1092-1096.2003
- Sakka M, Goto M, Fujino T, Fujino E, Karita S, Kimura T, Sakka K. 2010. Analysis of a Clostridium josui cellulase gene cluster containing the man5A gene and characterization of recombinant man5A. Biosci. Biotechnol. Biochem. 74: 2077-2082. https://doi.org/10.1271/bbb.100458
- Saleem M, Brim H, Hussain S, Arshad M, Leigh MB, Zia ul H. 2008. Perspectives on microbial cell surface display in bioremediation. Biotechnol. Adv. 26: 151-161. https://doi.org/10.1016/j.biotechadv.2007.10.002
- Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Su GD, Zhang X, Lin Y. 2010. Surface display of active lipase in Pichia pastoris using Sed1 as an anchor protein. Biotechnol. Lett. 32: 1131-1136. https://doi.org/10.1007/s10529-010-0270-4
- Suzuki H, Imaeda T, Kitagawa T, Kohda K. 2012. Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae. J. Biotechnol. 157: 64-70. https://doi.org/10.1016/j.jbiotec.2011.11.015
- Tamaru Y, Karita S, Ibrahim A, Chan H, Doi RH. 2000. A large gene cluster for the Clostridium cellulovorans cellulosome. J. Bacteriol. 182: 5906-5910. https://doi.org/10.1128/JB.182.20.5906-5910.2000
- Tanino T , Fukuda H , Kondo A. 2006. Construction of a Pichia pastoris cell-surface display system using Flo1p anchor system. Biotechnol. Prog. 22: 989-993. https://doi.org/10.1021/bp060133+
- Thompson CE, Beys-da-Silva WO, Santi L, Berger M, Vainstein MH, Guima Raes JA, Vasconcelos AT. 2013. A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves. AMB Express 3: 65. https://doi.org/10.1186/2191-0855-3-65
- Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H. 1999. Metazoan cellulase genes from termites: Intron/exon structures and sites of expression. Biochim. Biophys. Acta 1447: 146-159. https://doi.org/10.1016/S0167-4781(99)00169-4
- Tokuda G, Watanabe H, Matsumoto T, Noda H. 1997. Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (shiraki): distribution of cellulases and properties of endo-beta-1,4-glucanase. Zool. Sci. 14: 83-93. https://doi.org/10.2108/zsj.14.83
- Tsai SL, DaSilva NA, Chen W. 2013. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth. Biol. 2: 14-21. https://doi.org/10.1021/sb300047u
- Tsai SL, Oh J, S ingh S , Chen RZ, Chen W. 2009. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 75: 6087-6093. https://doi.org/10.1128/AEM.01538-09
- Ueda M, Tanaka A. 2000. Genetic immobilization of proteins on the yeast cell surface. Biotechnol. Adv. 18: 121-140. https://doi.org/10.1016/S0734-9750(00)00031-8
- Uversky VN, Kataeva IA. 2006. Cellulosome, pp. 7-21. Nova Science Publishers, New York.
- Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA. 2010. Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl. Environ. Microbiol. 76: 3236-3243. https://doi.org/10.1128/AEM.00009-10
- Vervecken W, Kaigorodov V, Callewaert N, Geysens S, De Vusser K, Contreras R. 2004. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl. Environ. Microbiol. 70: 2639-2646. https://doi.org/10.1128/AEM.70.5.2639-2646.2004
- Washida M, Takahashi S, Ueda M, Tanaka A. 2001. Spacermediated display of active lipase on the yeast cell surface. Appl. Microbiol. Biotechnol. 56: 681-686. https://doi.org/10.1007/s002530100718
- Wen F, Sun J, Zhao HM. 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol. 76: 1251-1260. https://doi.org/10.1128/AEM.01687-09
- You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Zhang YH. 2012. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl. Environ. Microbiol. 78: 1437-1444. https://doi.org/10.1128/AEM.07138-11
Cited by
- Production of D-Xylonic Acid from Hemicellulose Using Artificial Enzyme Complexes vol.27, pp.1, 2014, https://doi.org/10.4014/jmb.1606.06041
- Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides vol.15, pp.2, 2017, https://doi.org/10.1038/nrmicro.2016.164
- Heterologous Protein Expression in Pichia pastoris: Latest Research Progress and Applications vol.19, pp.1, 2014, https://doi.org/10.1002/cbic.201700460
- Reconstitution of cellulosome: Research progress and its application in biorefinery vol.66, pp.5, 2014, https://doi.org/10.1002/bab.1804
- Engineering of industrially important microorganisms for assimilation of cellulosic biomass: towards consolidated bioprocessing vol.47, pp.6, 2014, https://doi.org/10.1042/bst20190293