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Abstract 
 

At SAC 2004, Junod and Vaudenay designed the FOX family based on the Lai-Massey 

scheme. They noted that it was impossible to find any useful differential characteristic or 

linear trail after 8 rounds of FOX64 or FOX128. In this paper, we provide the lower bound of 

differentially active S-boxes in consecutive rounds of the Lai-Massey scheme that has SPS as 

its F-function, and we propose the necessary conditions for the reachability of the lower bound. 

We demonstrate that similar results can be obtained with respect to the lower bound of linearly 

active S-boxes by proving the duality in the Lai-Massey scheme. Finally, we apply these 

results to FOX64 and FOX128 and prove that it is impossible to find any useful differential 

characteristics or linear trail after 6 rounds of FOX64. We provide a more precise security 

bound for FOX128. 
 

 

Keywords: Lai-Massey, differentially active S-boxes, linearly active S-boxes, duality, SPS 

network 
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1. Introduction 

One of the most important parts of the block cipher is the high level, as it will directly affect 

the implementation performance and choice of round numbers. Among all of the high levels, 

the Lai-Massey scheme is well known for its simplicity and security. This scheme was first 

proposed by Lai and Massey in 1991, and it was used in the design of IDEA [1]. Since its 

inception, the Lai-Massey scheme has attracted considerable attention worldwide. In 

Asiacrypt ’99, Vaudenay added a simple function σ, which has the orthomorphic or α-almost 

orthomorphic property, to one branch of each round (Fig. 1) [2]. Junod and Vaudenay adopted 

this modified scheme and designed the FOX family (Fig. 2) [3]. In 2005, FOX was announced 

by MediaCrypt under the name of IDEA NXT. 
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  Fig. 1. The (extended) Lai-Massey Scheme                             Fig. 2. The Outline of FOX 

 

Various attack methods have been applied to FOX [4-8]. The best-known attacks against 

block ciphers are the differential cryptanalysis [9] and the linear cryptanalysis [10]. Designers 

should evaluate the security of any new proposed ciphers against these two cryptanalyses 

because they are the most powerful approaches available for attacking many symmetric block 

ciphers. In [11], Kanda et al. noted that the security of a cipher could be evaluated against these 

two cryptanalyses by upper-bounding the maximum differential characteristic and linear trail 

probabilities. For most block ciphers, the only nonlinear part is the S-boxes, and thus, the 

upper bounds of the maximum differential characteristic and linear trail probabilities are due 

to the lower bounds of the differentially and linearly active S-boxes in some consecutive 

rounds. 

For SPS structures, Rijmen et al. introduced the branch number [12], which is the lower 

bound of differentially (or linearly) active S-boxes. Because the basic framework of the round 

function in FOX is an SPS structure, Junod and Vaudenay proposed the lower bound of 

differential (or linear) S-boxes in FOX via providing the lower bound of differentially (or 

linearly) active round functions [3]. However, according to our observations, the lower bound 

provided by [3] cannot be obtained when the round number is greater than 3, indicating that 

the lower bound provided by [3] could be improved.  

This paper focuses on finding a tighter bound of active S-boxes in some consecutive rounds 

of the Lai-Massey scheme with an SPS F–function, and then, this result is used to improve the 

lower bound provided in [3]. Thus, we improve the results stated in [3] by Junod and 
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Vaudenay, who mentioned that at least 8 rounds of FOX64 can provide resistance against 

traditional differential and linear cryptanalyses. However, the result obtained here indicates 

that 6 rounds are sufficient for FOX64. 

This paper is organized as follows. Section 2 introduces some notations and definitions, 

Section 3 studies the lower bound of differentially active S-boxes in the Lai-Massey scheme 

with an SPS F-function, and Section 4 provides the duality in the Lai-Massey scheme and 

obtains the lower bound of its linearly active S-boxes. In addition, we apply these results to 

FOX64 and FOX128 in Section 4. Finally, the conclusions of this study are provided in 

Section 5. 

2. Preliminaries 

This section presents some notations and definitions. 

Throughout this paper, we will use the following symbols: 

Å              XOR operation; 

+              addition over the real number space; 

G
+            the addition operation over group G ; 

G
-            the inverse operation of 

G
+ ; 

( )Hw x       the number of nonzero components in vector x ;  
TP            the transpose of matrix P ; 

a b           the parity of the bitwise XOR of vectors and b ; 
1P           the inverse of matrix P . 

Definition 1
[2]

 Let ( , )GG   be a group, let 
1 2, , , rF F F  be r  functions on G , and let   be a 

permutation on G . We define an r-round Lai-Massey scheme as a permutation 

 1 2, , , rF F F  on 2G  by 

   1 2 2, , , ( , ) , , ( ( ( )), ( ))r r G G G GF F F x y F F x F x y y F x y          

and 

 ( , ) ( ( ), ( ))r G G G GF x y x F x y y F x y       

in which the last   is omitted. 

In the sequel, we assume the group is ({0,1} , )n  . For convenience, we denote 
1 2, , , rF F F  

as F  such that the round function can be written as  

( , ) ( ( ( )), ( ))i i i i i i i iQ x y x F x y y F x y     . 

Definition 2
[13]

 Let :{0,1} {0,1}n mf  ，and let {0,1} , {0,1}n m   . Then, 

1
( ) #{ {0,1} : ( ) ( ) }

2

n

f n
p x f x f x           

and 

( )

( )

{0,1}

1
( ) ( 1)

2 n

f x x

f n

x

W    



    

are called the probabilities of the differential    for f and the linear approximation    

for f respectively. 

Definition 3
[2]

 Let :{0,1} {0,1}n nf   be a mapping. Then, f  is called an orthomorphism if 

both ( )f x  and ( ) ( )g x f x x  are bijective. 

Definition 4
[14]

 An S-box (resp. F) is called differentially active if its input difference is 
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nonzero, and an S-box (resp. F) is called linearly active if its output mask value is nonzero. 

Note: When an S-box is bijective, an S-box with a non-zero output difference is also a 

differentially active S-box. Similarly, when an F-box is bijective, it is linearly active if it has a 

non-zero input mask value. 

Definition 5 Let ( )x Mx C    be an orthomorphism. Then, the Lai-Massey scheme with 
1( ) ( )T

D x M x C    as its σ is called the dual scheme for the Lai-Massey scheme with 

( )x Mx C    as its σ. 

Definition 6
[12]

 For the diffusion layer P, the relationship between the input difference and 

output difference is represented by matrix P, i.e., y P x   . Furthermore, the relationship 

between the output and input mask values is represented by TP ; thus, Tx P y   . In addition, 

the values 
0

( ) min{ ( ) ( )}d
x

B P Hw x Hw P x
 

     and 
0

( ) min{ ( ) ( )}T

l
x

B P Hw y Hw P y


     are called 

the differential branch number and linear branch number, respectively.  

3. Lower Bound of Differentially Active S-boxes in the Lai-Massey 
Scheme with an SPS F-function 

First, we will study the relationship between the differential of the round function and the 

differentials of the F-function and σ permutation. 

Theorem 1 The probability of the differential ( , ) ( , )A B    of the round function Q is 

nonzero iff the differentials for F and   are B     and B A    , respectively, 

and the probabilities of these two differentials are both nonzero. Moreover, 

(( , ) ( , )) ( ) ( )Q Fp A B p B p B A              . 

In particular, if ( ) ( ) (0)x x     is affine, then the output difference of F is 
1( )B A      . 

Proof See Appendix A. 

For the SPS structure, according to [13], the lower bound of the active S-boxes is listed in 

lemma 1. 

Lemma 1
[13]

 In the SPS structure, let S be bijective and let the differential branch and linear 

branch of P be 
dB  and 

lB , respectively. The number of differentially active S-boxes is at least 

dB  if the input difference is nonzero, and the number of linearly active S-boxes is at least 
lB  if 

the output mask is nonzero. 

For the Lai-Massey scheme, the lower bound of the active F-functions is given in lemma 2 

below. 

Lemma 2 Let   be an orthomorphism. Then, a consecutive 2-round differential 

characteristic for the Lai-Massey scheme with nonzero probability contains at least one active 

F -function. 

Proof Let ( , ) ( , ) ( , )A B u v    be a consecutive 2-round differential characteristic for the 

Lai-Massey scheme. Lemma 1 indicates that the differentials for F and   in the first round are 

B     and B A    , respectively, and the differentials for F and   in the 

second round are A B B v    and A B v u   , respectively. 

If the F-function is not active in the first round, then  and B   ; if F is not active in 

the second round, then A B and A B v  . Therefore, the differential for F in the first 

round’s function is A A . Because ( , ) (0,0)A B   and A B , 0A  , ( ) 0p A A    if   is 

an orthomorphism according to lemma 1. Moreover, theorem 1 indicates that 
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(( , ) ( , )) 0Qp A B    , which contradicts the fact that the probability is nonzero. Therefore, a 

consecutive two-round differential characteristic with nonzero probability contains at least 

one active F -function. 

Q.E.D 

For the Lai-Massey scheme with an SPS F-function, the corollary below follows from 

lemmas 1 and 2 because there are at least 
dB  differentially (

lB  linearly) active S-boxes in one 

active F-function. 

Corollary For the Lai-Massey scheme with an SPS F -function, let the differential and 

linear branches of P  be 
dB  and 

lB , respectively. Then, there are at least 
dnB  differential (

lnB  

linear) active S-boxes in 2n consecutive rounds.  

Remarks: Let 
dB  and 

lB  be odd. Then, for the nontrivial differential (linear 

approximation)   of an SPS structure, there are at least 1dB   ( 1lB  ) S-boxes that will 

be active after a P-permutation. Based on this fact, we make some improvement on the 

corollary of lemma 2. First, we consider the number of active S-boxes in 3 consecutive rounds, 

where 3dB   and 3lB  . 

Theorem 2 For the Lai-Massey scheme with an SPS F-function, let 
dB  be odd and let 

( ) ( ) (0)x x     be an affine orthomorphsim. Then, there are at least 1dB   active S-boxes 

in a 3-round differential characteristic iff the structure is 
2( , ) ( ( ), ) ( ( ), ( )) ( ( ), ( ))                

and the corresponding differentials for F are 0 0 ， ( ) ( )        ，and 0 0 , 

respectively. Here, ( ( ) ) ( 1) 2dHw B     . 

Proof If there are at least two active F-functions in the 3-round differential characteristic, 

this chain contains at least 2 dB  active S-boxes according to lemma 2. If there is only one 

active F-function in the 3-round differential characteristic, the structure of this differential 

characteristic is 2( , ) ( ( ), ) ( ( ), ( )) ( ( ), ( ))                and the corresponding 

differentials for F are 0 0 ， ( ) ( )        ，and 0 0 , respectively, where 0  , 

according to theorem 1. Because 
dB  is odd, the differential ( ) ( )         for the SPS 

structure contains at least 1dB   active S-boxes, where ( ( ) ) ( 1) 2dHw B     . 

Q.E.D. 

In the sequel, ( )a bAS   denotes the number of active S-boxes in the differential characteristic 

from the ath to bth round, and ( )aAS  denotes the number of active S-boxes in the ath round. 

Theorem 3 For the Lai-Massey scheme with an SPS F-function, let 3dB   be odd and let 

( ) ( ) (0)x x     be an affine orthomorphsim. 

(1) There are at least 
( )r

DLow ( 3r  ) active S-boxes in an r-round differential characteristic, 

where 

( ) ( 1)( 1) / 2,    ;

( / 2 2)( 1) 2 ,    

r d

D

d d

r B if r is odd
Low

r B B if r is even

 
 

   .
 

(2) If the number of active S-boxes is 
( )r

DLow in the r-round differential characteristic, then the 

F-functions in the first and last rounds are non-active. 

Proof According to theorem 2, this theorem is true for 3r  . Next, we use induction to 

prove this theorem. 

Suppose that (1) and (2) are true for 2 1r m  . For 2 2r m  , the number of active S-boxes 
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in the first round is at least
dB  if the F-function in the first round is active. By inductive 

supposition we have that (2 2 2) ( 1)m

dAS m B    . Hence, 
(1 2 2) (1) (2 2 2)

                ( 1)( 1) 2 1

                ( 1)( 1) 2 .

m m

d d

d d

AS AS AS

m B B

m B B

    

    

   

 

A similar proof can be provided for the case in which the F-function in the last round is 

active, i.e., that (1 2 2) ( 1)( 1) 2m

d dAS m B B      . Therefore, (2) is true for 2 2r m  . 

We now consider the case that the F-function is active in neither the first nor last round. 

Two cases are stated below based on whether the F-function in the 2m th round is active or 

not. 

Case 1: Suppose that F is not active in the 2m th round; then, we have 
( 2 2 2) ( 2) ( 3 2 2) ( 3 2 2)m m m m m m mAS AS AS AS            .  

Therefore, (1 2 2) (1 2) ( 3 2 2) (1 2) ( 2 2 2)=m m m m m m mAS AS AS AS AS              . 

If m is odd, ( 2 2 2) [( 1) 2 2]( 1) 2m m

d dAS m B B         and (1 2) ( 1)( 1) 2m

dAS m B      by 

inductive supposition; therefore, 
(1 2 2) ( 1)( 1) 2 [( 1) 2 2]( 1) 2

               ( 1)( 1) 2 .

m

d d d

d d

AS m B m B B

m B B

         

   
 

If m is even, (1 2) ( 2 1)( 1) 2m

d dAS m B B       and ( 2 2 2) ( 2)( 1)m m

dAS m B      by the 

supposition; therefore, 
(1 2 2) [( 2 1)( 1) 2 ] ( 2)( 1)

                ( 1)( 1) 2 .

m

d d d

d d

AS m B B m B

m B B

       

   
 

This result indicates that (1) is true for 2 2r m   when the F-function in the 2m th round 

is non-active. 

Case 2: Suppose that the F-function in the 2m th round is active. Then, we can 

demonstrate that (2 2) (1 1) ( 2) ( 3 2 2) .m m m m mAS AS AS AS          

If m is odd, then by the inductive supposition,  
(1 1) [( 1) / 2 2]( 1) 2m

d dAS m B B       , ( 3 2 2) ( 1)( 1) 2m m

dAS m B      . 

If (1 1) [( 1) / 2 2]( 1) 2m

d dAS m B B        and ( 3 2 2) ( 1)( 1) 2m m

dAS m B      , then  
( 1) ( 3) 0m mAS AS    by (2) in the supposition. Moreover, considering the implications of 

theorem 2, we have ( 2) ( 1 3) 1m m m

dAS AS B      ; thus, 
(1 2 2) (1 1) ( 2) ( 3 2 2)

(1 1) ( 1 3) ( 3 2 2)

[( 1) 2 2]( 1) 2 1 ( 1)( 1) 2

( 1)( 1) 2 .

m m m m m

m m m m m

d d d d

d d

AS AS AS AS

AS AS AS

m B B B m B

m B B

       

       

  

  

         

   

 

If (1 1)mAS   and ( 3 2 1)m mAS    cannot reach the minimum number simultaneously, then  
(1 1) ( 3 2 2) [( 1) 2 2]( 1) 2 ( 1)( 1) 2 1

                                     ( 1)( 1) .

m m m

d d d

d d

AS AS m B B m B

m B B

             

   
. 

Because the F-function in the 2m -th round is active, we have ( 2)m

dAS B  . Hence, 
(1 2 2) (1 1) ( 3 2 2) ( 2)

                ( 1)( 1) ( 1)( 1) 2 .

m m m m m

d d d d d

AS AS AS AS

m B B B m B B

         

        
 

Thus, (1) is true for 2 2r m   when m is odd. 

If m is even, then by the inductive supposition, 
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(1 1) ( 2)( 1)m

dAS m B    , ( 3 2 2) ( 2 2)( 1) 2m m

d dAS m B B       . 

If (1 1) ( 2)( 1)m

dAS m B     and ( 3 2 2) ( 2 2)( 1) 2m m

d dAS m B B       , then  
( 1) ( 3) 0m mAS AS    by (2) in the supposition. Moreover, ( 2) ( 1 3) 1m m m

dAS AS B       

according to theorem 2. Hence, 
(1 2 2) (1 1) ( 2) ( 3 2 2)

(1 1) ( 1 3) ( 3 2 2)

( 2)( 1) 1 ( 2 2)( 1) 2 2

( 1)( 1) 2

m m m m m

m m m m m

d d d d

d d

AS AS AS AS

AS AS AS

m B B m B B

m B B

       

       

  

  

       

   

 

If (1 1)mAS   and ( 3 2 1)m mAS    cannot reach the minimum number simultaneously, then  
(1 1) ( 3 2 2) ( 2)( 1) ( 2 2)( 1) 2 2 1

( 1)( 1) .

m m m

d d d

d d

AS AS m B m B B

m B B

           

   
 

Because the F-function in the 2m th round is active, we have ( 2)m

dAS B   Hence, 
(1 2 2) (1 1) ( 3 2 2) ( 2)

( 1)( 1)

( 1)( 1) 2 .

m m m m m

d d d

d d

AS AS AS AS

m B B B

m B B

         

    

   

 

Thus, (1) is true for 2 2r m   when m is even. Therefore, (1) is true for 2 2r m   if the 

F-function in the 2m th round is active. 

Cases 1 and 2 demonstrate that (1) is true for 2 2r m   if it is true for 2 1.r m   

Next, suppose that (1) and (2) are true for 2r m . For 2 1r m  , (1)

dAS B  if the 

F-function in the first round is active, and (2 2 1) ( 2)( 1) 2m

d dAS m B B       according to (2) in 

the inductive supposition. As a result, 
(1 2 1) ( 2)( 1) 2 ( 1) 2 ( 1)m

d d d d d dAS B m B B m B B m B             . 

Similarly, (1 2 1) ( 1)m

dAS m B     if the F-function in the last round is active. Therefore, (2) is 

true for 2 1r m  . 

Next, we consider the case in which neither the F-function in the first round nor the 

F-function in the last round is active. Two cases are listed below according to whether the 

F-function in the 2m th round is active or not. 

Case 1: Suppose that F in the 2m th round is not active. Then, we have  
( 2 2 1) ( 2) ( 3 2 1) ( 3 2 1)m m m m m m mAS AS AS AS            ; 

therefore, (1 2 1) (1 2) ( 2 2 1)m m m mAS AS AS        . 

If m is odd, then ( 2 2 1) ( 1)( 1) / 2m m

dAS m B       and (1 2) ( 1)( 1) 2m

dAS m B      by inductive 

supposition. Therefore, 
(1 2 1) ( 1)( 1) 2 ( 1)( 1) 2 ( 1)m

d d dAS m B m B m B          . 

If m is even, then, by the supposition, we have  
(1 2) ( 2 1)( 1) 2m

d dAS m B B      , ( 2 2 1) ( 2 2)( 1) 2m m

d dAS m B B       . 

Thus, 
(1 2 1) [( 2 1)( 1) 2 ] ( 2 2)( 1) 2

                ( 3)( 1) 4 .

m

d d d d

d d

AS m B B m B B

m B B

         

   
. 

Moreover, as ( 2)( 1) 4 ( 1)d d dm B B m B      is equivalent to 3dB  , then 
(1 2 1) ( 3)( 1) 4 ( 1)m

d d dAS m B B m B        , which indicates that (1) is true for 2 1r m  . 

Case 2: If the F-function in the 2m th round is active, then 
(2 1) (1 1) ( 2) ( 3 2 1)m m m m mAS AS AS AS         . 
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If m is odd, by inductive supposition, 
(1 1) [( 1) 2 2]( 1) 2m

d dAS m B B       , ( 3 2 1) [( 1) / 2 2]( 1) 2m m

d dAS m B B        . 

 If (1 1)mAS   and ( 3 2 1)m mAS     make the equality true simultaneously, then 
( 1) ( 3) 0m mAS AS    by (2) in the inductive supposition. Moreover, 
( 2) ( 1 3) 1m m m

dAS AS B       according to theorem 2. Hence, 
(1 2 1) (1 1) ( 2) ( 3 2 1)

(1 1) ( 1 3) ( 3 2 1)                    

  [( 1) 2 2]( 1) 2 1 [( 1) / 2 2]( 1) 2

 ( 1) 3 ( 1).

m m m m m

m m m m m

d d d d d

d d d

AS AS AS AS

AS AS AS

m B B B m B B

m B B m B

       

       

  

  

           

     

 

If (1 1)mAS   and ( 3 2 1)m mAS     cannot make the equality true simultaneously, then 
(1 1) ( 3 2 1)

  [( 1) 2 2]( 1) 2 [( 1) / 2 2]( 1) 2 1

 ( 4)( 1) 4 1.

m m m

d d d d

d d

AS AS

m B B m B B

m B B

    

          

    

 

( 2)m

dAS B   because the F-function in 2m th round is active; therefore, 
(1 2 1) (1 1) ( 3 2 1) ( 2)

               ( 4)( 1) 4 1

               ( 1) 3 ( 1).

m m m m m

d d d

d d d

AS AS AS AS

m B B B

m B B m B

         

     

     

 

This result indicates that when m is odd, (1) is true for 2 1r m  . 

If m is even, by inductive supposition, we have 
(1 1) ( 2)( 1)m

dAS m B    , ( 3 2 1) ( 2)( 1) 2m m

dAS m B      . 

If (1 1)mAS   and ( 3 2 1)m mAS     make the equality true simultaneously, we obtain 
( 1) ( 3) 0m mAS AS    by (2) in the supposition, and thus, ( 2) ( 1 3) 1m m m

dAS AS B       

according to theorem 2. Hence, 
(1 2 1) (1 1) ( 2) ( 3 2 1)

(1 1) ( 1 3) ( 3 2 1)               

               ( 2)( 1) 1 ( 2)( 1) 2 ( 1).

m m m m m

m m m m m

d d d d

AS AS AS AS

AS AS AS

m B B m B m B

       

       

  

  

        

 

If (1 1)mAS   and ( 3 2 2)m mAS     do not make the desired equality true simultaneously, then 
(1 1) ( 3 2 1)   

( 2)( 1) ( 2)( 1) 2 1

( 1)( 1) 1.

m m m

d d

d

AS AS

m B m B

m B

    

     

   

 

Because F in the 2m th round is active, we have ( 2)m

dAS B   and 
(1 2 1) (1 1) ( 3 2 1) ( 2)

                ( 1)( 1) 1 ( 1).

m m m m m

d d d

AS AS AS AS

m B B m B

         

      
. 

This result demonstrates that (1) is true for 2 1r m   when m is even. Therefore, (1) is true 

for 2 1r m   if F in round 2m  is active. 

Cases 1 and 2 demonstrate that (1) and (2) are true for 2 1r m   if (1) and (2) are true for 

2r m . 

Therefore, inductive supposition indicates that this theorem is true for 3r  . 
Q.E.D. 

We can obtain corresponding results for the 5-round differential characteristic in the 

Lai-Massey scheme with an SPS F-function according to theorem 3. 

Corollary For the Lai-Massey scheme with an SPS F-function, let 3dB   be odd and let 
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( ) ( ) (0)x x     be an affine orthomorphsim. Then, there are at least 2 2dB   active S-boxes 

in a 5-round differential characteristic, and the lower bound is reached iff the structure of the 

5-round differential characteristic is 
2

2 2 3 2

( , ) ( ( ), ) ( ( ), ( )) ( ( ), ( ))

         ( ( ), ( )) ( ( ), ( ))

            

       

  

 
 

for some 0  with 2( ( ) ) ( ( ) ( )) ( 1) 2dHw Hw B           . The corresponding 

differentials for F are 0 0 ， ( ) ( )        ， 0 0 , 2 2( ) ( ) ( ) ( )          , 

and 0 0 , respectively. 

Theorem 4 For the Lai-Massey scheme with an SPS F-function, let 3dB   be odd and let 

( ) ( ) (0)x x     be an affine orthomorphism. 
( )

= 2
r

D dY r B    is the lower bound in the 

corollary of lemma 2. 
( )r

DLow  ( 3r  ) is defined as in theorem 3, then we have 

( ) ( ) ( 1) / 2,    ;

( 4) / 2,    

r r

D D

r if r is odd
Low Y

r if r is even


  

 .
 

Proof 
( )

= 2
r

D dY r B    according to lemma 2; thus, according to theorem 3, we have 

( ) ( ) ( 1)( 1) / 2 ( 1) / 2,    ;

( / 2 2)( 1) 2 / 2,      

( 1) / 2,    ;
                   

( 4) / 2,    

r r d d

D D

d d d

r B r B if r is odd
Low Y

r B B rB if r is even

r if r is odd

r if r is even

   
  

   


 



.

.

 

Q.E.D. 
Theorem 3 provides the lower bound of the differentially active S-boxes in the Lai-Massey 

scheme with an SPS F-function, which is larger than the results obtained by the multiplication 

of the differential branch number and the number of active F-functions. Moreover, theorem 4 

demonstrates that the increment has no relationship with 
dB , where 

dB  is odd. 

4. Lower Bound of Linearly Active S-boxes in the Lai-Massey Scheme 
with an SPS F-function 

Next, we focus on the lower bound of linearly active S-boxes in the Lai-Massey scheme with 

an SPS F-function. Based on the duality of the structure between the differential characteristic 

and linear trail, the lower bound of the linearly active S-boxes in the Lai-Massey scheme under 

consideration can be easily obtained. 

Theorem 5  Let ( )x Mx C   be affine, then the linear approximation ( , ) ( , )A B   for 

the round function Q has nonzero coefficient   iff 0TB M A     . Besides, the linear 

approximation for F is B     , and the coefficient is ( 1)A C   . 

Proof See Appendix B. 

Theorem 6 (The dual theorem between the differential characteristic and linear trail in the 

Lai-Massey scheme.) 

Let  be an affine orthomorphism. Then, the n-round differential characteristic 

0,1 0,2 1,1 1,2 ,1 ,2( , ) ( , ) ( , )n na a a a a a    has nonzero probability, and the corresponding 

differentials of F are 0,1 0,2 0a a c  , 1,1 1,2 1a a c  ,…, 1,1 1,2 1n n na a c     iff 

0,1 0,2 1,1 1,2 ,1 ,2( , ) ( , ) ( , )n na a a a a a    is an n-round linear trail of its dual Lai-Massey scheme 

with a nonzero correlation coefficient and the corresponding linear approximations of the 
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F-function are 
0 0,1 0,2c a a  ,

1 1,1 1,2c a a  ,…,
1 1,1 1,2n n nc a a    . 

Proof See Appendix C. 

Based on the duality, similar results can be obtained with respect to linearly active S-boxes, 

which are stated in the following theorems 7 and 8. 

Theorem 7 For the Lai-Massey scheme with an SPS F-function, let 3lB   be odd and let 

( )x Mx C    be an affine orthomorphsim. Then, the following statements are true: 

(1) There are at least 
( )r

LLow  ( 3r  ) active S-boxes in an r-round linear trail, where 

( ) ( 1)( 1) / 2,    ;

( / 2 2)( 1) 2 ,    

r l

L

l l

r B if r is odd
Low

r B B if r is even

 
 

   .
 

(2) If the number of active S-boxes is 
( )r

LLow in the r-round linear trail, then F is active 

neither in the first nor last round. 

Theorem 8 For the Lai-Massey scheme with an SPS F-function, let 3lB   be odd and let 

( )x Mx C    be an affine orthomorphsim, where 3r  . 
( )

= 2
r

L lY r B    is the lower bound in 

the corollary of lemma 2 and
( )r

LLow  is as defined as in theorem 7, then 

( ) ( ) ( 1) / 2, if  is odd;

( 4) / 2, if  is even

r r

L L

r r
Low Y

r r


  

 .
 

For FOX64, = =5d lB B ; for FOX128, = =9d lB B . By combining theorems 4 and 8, we can 

obtain the lower bound of differentially active S-boxes ranging from 3 rounds of FOX64 to 12 

rounds of FOX64. Similarly, we can obtain the lower bound of linearly active S-boxes ranging 

from 3 rounds of FOX128 to 12 rounds of FOX128.  Table 1 compares the results of this study 

with those presented in [3]. 

 
Table 1. The number of active S-boxes in FOX64 and FOX128 

Rounds(r) 

The number of active S-boxes 

in FOX64 

The number of active S-boxes 

 in FOX128 

This paper Ref[3] This paper Ref[3] 

3 6 5
 

10 9 

4 10 10 18 18 

5 12 10 20 18 

6 16 15 28 27 

7 18 15 30 27 

8 22 20 38 36 

9 24 20 40 36 

10 28 25 48 45 

11 30 25 50 45 

12 34 30 58 54 

 

The above table illustrates that the results obtained here are superior to the results in [3]. 

Theorem 9 It is impossible to find any useful differential of the linear characteristic after 6 

rounds of FOX64. 

Proof From [3], 4

max max 2sbox sboxDP LP   . We can conclude that this theorem is correct from 

Table 1. 
Q.E.D. 

Junod and Vaudenay proved that it is impossible to find any useful differential 

characteristic or linear trail after 8 rounds of either FOX64 or FOX128 [3]. This paper 
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demonstrates that a smaller number of rounds of FOX64 can resist a differential and linear 

attack. For FOX128, although we do not decrease the number of rounds from 8, we obtain a 

more precise bound on the lower bound of the active S-boxes, illustrating that FOX128 is safer 

than previously thought.  

5 Conclusions 

This paper focuses on the lower bounds of differentially and linearly active S-boxes in a set 

number of consecutive rounds of the Lai-Massey scheme with an SPS F-function. First, we 

provide the lower bound of the differentially active S-boxes, and similar results are obtained 

for linearly active S-boxes based on the duality in the Lai-Massey scheme. Finally, we apply 

our results to FOX and provide a tighter bound on the lower bound of active S-boxes. This 

paper demonstrates that it is impossible to find any useful differential characteristic or linear 

trail after 6 rounds of FOX64, rather than the 8 rounds used by Junod and Vaudenay at SAC 

2004. In addition, the corollaries in this paper have practical uses because the P permutations 

that we use in block ciphers typically have the maximum branch number, and the dimension of 

P is even, which means that the differential branch number and linear branch number of P are 

odd. 
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Appendix 

A     Proof of Theorem 1 

Theorem 1 The probability of the differential ( , ) ( , )A B    of the round function Q is nonzero iff 

the differentials for F and   are B     and B A    , respectively, and the 

probabilities of these two differentials are both nonzero. Moreover, 

(( , ) ( , )) ( ) ( )Q Fp A B p B p B A              . 

In particular, if ( ) ( ) (0)x x     is affine, then the output difference of F is 1( )B A      . 

Proof  Let the two inputs of Lai-Massey scheme be ( , )x y and ( , )x y   respectively, then the 

outputs of F are 
1 ( )b F x y  and

2 ( )b F x y       correspondingly. Since the output difference 

of round function Q is  

( , ) ( , )

( ( ( )), ( )) ( ( ( )), ( ))

Q x y Q x y

x F x y y F x y x F x y y F x y

 

       

  

               
 

2 2 1 1

2 1 1 2

=( ( ), ) ( ( ), )

( ( ) ( ), ).

x b y b x b y b

x b x b b b

   

   

      

      
 

Then the output difference of round function Q being ( , )A B  is equivalent to 

2 1( ) ( )

( ) ( )

x b x b A

F x y F x y B

  

  

    


      
, 

which means that the differentials of F and   are B     and B A    , respectively.   

Let z x y  . Obviously, the number of inputs satisfying the above formula is  

2 1

2 1

2 1

2 1

: ( ) ( )

#{( , ) : ( ) ( ) , ( ) ( ) }

#{( , ) : ( ) ( ) , ( ) ( ) }

#{ : ( ) ( ) , ( ) ( ) }

#{ : ( ) ( ) }

z

z F z F z B

x y F x y F x y B x b x b A

x z F z F z B x b x b A

x F z F z B x b x b A

x x b x b A
  

     

     

     

  
    

           

          

          

     





 

Since 2 1b b B   , then we have  

1 1

: ( ) ( )

: ( ) ( )

#{ : ( ) ( ) }

#{ : ( ) ( ) }

#{ : ( ) ( ) } #{ : ( ) ( ) }

z F z F z B

z F z F z B

x x b B x b A

t t B t A

z F z F z B t t B t A

  

  

   

   

      

    

    

      

     

           



  

The above formula shows that the probability of the differential for round function Q  is  

(( , ) ( , )) ( ) ( )Q Fp A B p B p B A              . 

So (( , ) ( , )) 0Qp A B     iff ( ) 0Fp B      and ( ) 0p B A      .  

Specially, if  is affine, since ( ) 0p B A      , then ( ) 1p B A      , therefore we 

have ( )B A     , which means that the output difference of F is 1( )B A      . 

http://dx.doi.org/10.1007/3-540-60865-6_47
http://dx.doi.org/10.1007/3-540-44706-7_19
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B     Proof of Theorem 5  

Theorem 5  Let ( )x Mx C   be affine, then the linear approximation ( , ) ( , )A B   for the  

round function Q has nonzero coefficient   iff 0TB M A     . Besides, the linear 

approximation for F is B     , and the coefficient is ( 1)A C   . 

Proof  Let ( , ) ( , )A B   be the linear approximation for round function Q and its  

coefficient be  . Let 
1 2( , )x x be the input of Lai-Massey scheme.  

Let
1x x , 

1 2y x x  and  1 2F x x b  , then  

1 2 1 2

1 2 1 1 2 2 1 2

( , ) ( , ) ( , ) ( , )

( ( ) ) ( ( ) )

= ( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( ( )) ( )

kA B Q x x x x

A F x x x B F x x x x x

x A x B x y A F y B F y A C

B x A x B y A F y B F y A C

 

  

   

    



         

      

        

 

Let all the variables be row vectors. From ( )x Mx C   , we can get  

  ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[( ) ] ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T T

T T T T T

T T

B x A Mx A C B y A MF y B F y A C A C

B x A Mx B y A MF y B F y A C

B A M x A M B F y B y A C

B M A x M A B F y B y A C

  

  

  

  

         

        

        

        

 

Therefore , we get 

1 2 1 2

1 2

( , ) ( , ) ( , ) ( , ) ( ) ( ) ( ) ( )

, ,

( ) ( ) ( ) ( )

( 1) ( 1)

[ ( 1) ][ ( 1) ].

T T
k

T T

A B Q x x x x B M A x M A B F y B y A C

x x x y

B M A x M A B F y B y A C

x y

    

  

        

      

  

  

 

 
 

If 0TB M A     , then ( )( 1) 0
TB M A x

x

      , thus 

1 2 1 2

1 2

( , ) ( , ) ( , ) ( , )

,

( 1) 0kA B Q x x x x

x x

 
  . 

This is a contradiction to 0  , so 

( ) ( )

( )

(( , ) ( , )) ( ) ( 1)

                                   ( ) ( 1) ,

k

T A C

Q F

A C

F

W A B W B M A B

W B

  

  

      

     
 

which proves this theorem. 

C     Proof of Theorem 6 
First, we give the relationship between the structure of the differential and the linear approximation in 

Lai-Massey scheme. 

Lemma 3  Let  be affine and bijective, then the differential with nonzero probability of round 

function is 
0 1 0 1( , ) ( , )     and the corresponding differential for F is 

0 1 c    iff the round 

function of its dual Lai-Massey scheme has linear approximation 
0 1 0 1( , ) ( , )     with nonzero 

coefficient, and the corresponding linear approximation for F is 
0 1c    . 

Proof  By theorem 1, the probability of the differential  0 1 0 1( , ) ,    for the round function is 

nonzero iff the differential for F is 0 1 1 1      , and 1

0 1 1 0M      . 

From theorem 5 we know that the round function of its dual Lai-Massey scheme has linear 

approximation  0 1 0 1( , ) ,     with nonzero coefficient iff the linear approximation for F is 

1 1 0 1      , and 1

0 1 1 0(( ) ) 0T TM       , i.e., 1

0 1 1 0M      , so this theorem 

is true. 
Theorem 6  (The dual theorem between differential characteristic and linear trail of Lai-Massey 
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scheme ) 

Let   be affine and bijective, then the n-round differential characteristic 

0,1 0,2 1,1 1,2 ,1 ,2( , ) ( , ) ( , )n na a a a a a    has nonzero probability and the corresponding differentials 

for F are 
0,1 0,2 0a a c  ,

1,1 1,2 1a a c  ,…, 
1,1 1,2 1n n na a c     iff 

0,1 0,2 1,1 1,2 ,1 ,2( , ) ( , ) ( , )n na a a a a a   is an n-round linear trail of its dual Lai-Massey scheme with 

nonzero coefficient and the corresponding linear approximations for F are 

0 0,1 0,2c a a  ,
1 1,1 1,2c a a  ,…,

1 1,1 1,2n n nc a a     respectively. 

Proof  This theorem can be obtained through inductive assumption by using lemma 3 above.  
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