DOI QR코드

DOI QR Code

고체로켓모터의 적외선 신호에 관한 수치적·실험적 연구

Numerical and Experimental Study on Infrared Signature of Solid Rocket Motor

  • Kim, Sangmin (School of Mechanical Engineering, Yonsei University) ;
  • Kim, Mintaek (School of Mechanical Engineering, Yonsei University) ;
  • Song, Soonho (School of Mechanical Engineering, Yonsei University) ;
  • Baek, Gookhyun (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Yoon, Woongsup (School of Mechanical Engineering, Yonsei University)
  • 투고 : 2014.06.03
  • 심사 : 2014.09.10
  • 발행 : 2014.10.01

초록

미사일의 탐지, 인식 및 추적 및 적외선을 줄여 피탐지성을 최소화 하는 데에 있어 로켓 플룸의 적외선 신호는 중요한 역할을 한다. 저연 추진제 및 무연 추진제를 사용하는 소형 고체로켓모터를 사용하여 로켓 플룸의 적외선 신호를 계측하였다. 로켓 플룸의 적외선 신호를 예측하기 위해 플룸의 유동장에 대한 전산모사를 수행하였으며, layered integration 방법을 사용하여 적외선 신호를 예측하였다. 해석 및 계측 결과는 잘 일치하였다. 두 신호 모두 $H_2O$에 의해 $2.5-3.0{\mu}m$영역에서, CO 및 $CO_2$에 의한 $4.5{\mu}m$ 영역에서 강한 신호를 나타낸다. 계측 결과, $4.3{\mu}m$ 영역에서 해석 결과와 다르게 강한 신호가 나타나는데, 이는 대기 중의 $CO_2$에 의한 흡수를 보정하는 과정에서 발생하는 실험 오차로 판단된다.

Infrared signature of rocket plume plays an important role for detection, recognition, tracking and minimzing for low observability. Infrared signatures of rocket plume with reduced smoke propellant and smokeless propellant are measured. In order to estimate the infrared signature of rocket plume, CFD analysis for flow structure of plume is performed, and layered integration method for estimating of infrared signature is used. Numerical and experimental results were in good agreement. Both propellants had similar infrared signature. Strong peak at $4.3{\mu}m$ region in the experimental results is appeared due to experimental error arising from the calibration procedure.

키워드

참고문헌

  1. Zirkind, R., "Radiation from Rocket-Exhaust Plumes," Symposium on Combustion, Vol. 11, No. 1, pp. 613-620, 1967.
  2. Hong, J., Deborah, L., Robert, C., Jonathan, E. and Alan, T., "Comparison of Atlas Ground Based Plume Imagery with Chemically Reacting Flow Solutions," 32nd Thermophysics conference, Atlanta, GA, U.S.A., AIAA 97-2537, Jun. 1997.
  3. Alexeenko, A., Gimelshein, N.E., Levin, D.A., Collins, R.J., Rao, R., Candler, G.V., Gimelshein S.F., Hong, J.S. and Schilling, T., "Modeling of Flow and Raidation in the Atlas Plume," J. Thermophysics and Heat Transfer, Vol. 16, No. 1, pp. 50-57, 2002. https://doi.org/10.2514/2.6651
  4. Avital, G., Cohen, Y., Gamss, L., Kanelbaum, Y., Macales, J., Trieman, B., Yaniv, S., Lev, M., Stricker, J. and Sternlieb, A., "Experimental and Computational Study of Infrared Emission from Underexpanded Rocket Exhaust Plumes," J. Thermophysics and Heat Transfer, Vol. 15, No. 4, pp. 377-383, 2001. https://doi.org/10.2514/2.6629
  5. Tejwani, G., "Transmittance and Radiance Computations for Rocket Engine Plume Environments," 2003 ASME Heat Transfer Conference, Nevada, LV, U.S.A., HT2003-47406, Jul. 2003.
  6. Surzhikov, S.T., "3-D Model of the Spectral Emissivity of Light-scattering Exhaust Plumes," High Temperature, Vol. 42, No. 5, pp. 763-775, 2004. https://doi.org/10.1023/B:HITE.0000046675.90866.a0
  7. Rapanotti, J.L., "Fluent-based Modelling of Rocket Exhaust Signatures," Proc. of SPIE, Orlando, FL., U.S.A., Vol. 6239, Apr. 2006.
  8. Ye, Q., Sun, X., Zhang, C., Shao, L. and Wang, Y., "Modeling and Simulation of Infrared Radiation form Rocket Plume at Boosting Stage," International Symposium on Photoelectronic Detection and Imaging, Beijing, China, Jun. 2009.
  9. Dargaud, J.B., Troyes, J., Lamet J.M., Tesse, L., Vuillot, F. and Bailly, C., "A Study of Solid Rocket Motor Ignition Overpressure Waves: Jet Flow Development and IR Radiation," 4th European conference for aerospace science, Saint Petersburg, Russia, Jul. 2011.
  10. Wang, W., Li, S., Zhang, Q. and Wang, N., "Infrared Radiation Signature of Exhaust Plume from Solid Propellants with Different Energy Characteristics," Chinese Journal of Aeronautics, Vol. 26, No. 3, pp. 594-600, 2013. https://doi.org/10.1016/j.cja.2013.04.019
  11. Frenklach, M., Bowman, C.T., Smith, G.P. and Gardiner, W.C., "Gri-Mech," World Wide Web location http://www.me.berkeley.edu/gri_mech/, Version 3.0, 1999.
  12. Soufinani, A., Hartmann, J.M. and Taine, J., "Vaidity of Band-model Calculations for $CO_2$ and $H_2O$ Applied to Radiative Properties and Conductive-Radiative Transfer," J. Quant. Spectrosc. Radiat. Transfer, Vol. 33, No. 3, pp. 243-257, 1985. https://doi.org/10.1016/0022-4073(85)90154-2